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Abstract

Microemulsions are objects of chemical physics with great theoretical and
practical importance. They consist of curved monomolecular fluid films of
amphiphiles in the nano range, which separate oil from water. One way of
understanding the variety of shapes and phases is the application of the
continuum mechanical theory of surfaces with bending stiffness. The present
monograph tries to give a comprehensive treatment within the framework of
full non-linearity in the spirit of rational mechanics. Incorporated are bending
and stretching of the film, the monomeric solubility of the amphiphile within
the bulk fluids, and the influence of the pressures in the cavities. While the
experimentally confirmed three-phase coexistence of a microemulsion with an
oil and a water excess cannot be explained on the basis of a linear bending
elasticity approach, the nonlinear setting can predict this phenomenon. In a
former paper, this has already been shown on the basis of a phenomenological
ad hoc assumption, which allows symmetry breaking. In the present study, it
is proved that a possible explanation is the existence of a state of prestress
within the amphiphilic film.
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Preface

The reader may be surprised that an engineer is engaged in a topic from
chemical physics. In 1998, Oliver Lade, at that time occupied with his thesis[8]
on amphiphiles at the University of Cologne, pointed out to me, that the
behaviour of microemulsions had recently been understood to be governed
by the bending elasticity of monomolecular amphiphilic films (Gompper and
Schick[2], Strey[17]). As I had been involved since decades in the mechanics
of structures, where bending plays a central role, I became interested in this
field of chemical research.
Soon I realized that the statics of such a fluid film differs markedly from
that of the solid shells of engineering (pressure vessels, concrete domes) ([6]).
Oliver Lade and I exploited the idea of symmetry breaking of the bending
energy density function, originating in [9], and succeeded in explaining the
occurence of an X point in phase maps of microemulsions ([7]).

But these two papers left some questions open:

• How can the monomeric solubility of the amphiphile in oil and water
be incorporated?

• Which is the influence of a stretching of the film in addition to bending?

• How can the pressures in the cavities be obtained?

• Which is the deeper cause of the symmetry breaking, beyond a phe-
nomenological ad hoc assumption?

• Which are the conditions of a coexistence of different structures within
the microemulsion?

• Is it admissible to interpret the spinning drop test on the basis of the
concept of a surface tension although Helfrich already pointed out that
the internal forces of a film are much more copious?

The answer to these questions is the topic of this monograph.

I thank Oliver Lade for helpful comments.
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1 Objectives and Main Results

This monograph tries to bridge the gap between nonlinear continuum me-
chanics and the theory of microemulsions, which is an object of chemical
physics. Therefore, it starts with two separate introductions. The first is in-
tended to communicate the basic facts of microemulsions to researchers in the
field of mechanics. The second seeks to clarify concepts of modern continuum
mechanics to researchers in chemistry. So the investigation is expected to be
of use to scientists of both disciplines.

The list of references is restricted. Useful survey articles, describing ex-
perimental findings and containing extensive bibliographies are [17], [2], [12],
[4], [16], [19].

1.1 Information for the Reader with a Background in
Mechanics

It is well known, that oil and water do not mix. However, the addition of a
sufficient amount of amphiphile gives rise to the formation of a microemul-
sion, which looks homogeneous, at least macroscopically. If the amount of
amphiphile is too small, then a decomposition into two or three separate
phases will be observed: A microemulsion, which is rich of amphiphile, and
above and/or below it excesses of oil and water, respectively, with a rather
low content of amphiphile. Then, the efficiency of the amphiphile is too low,
or otherwise speaking, the amphiphile is to weak to bring all of the oil and
the water together. This phenomenon is also termed emulsification failure.

The macroscopic behaviour is meanwhile well understood on the basis
of various experiments which give insight into the microemulsion on a meso-
scopic level. They reveal that oil and water are separated by a monomolecular
amphiphilic film which may form a variety of structures: lamellae, micelles
as well as bi-continuous surfaces. We will restrict our attention to non-ionic
amphiphiles. Such a film possesses preferred curvatures which are strongly
influenced by the temperature ([17]). It tries to occupy these curvatures
but is constrained by the fact that no structure — except planes, spheres
and cylinders — has constant curvatures everywhere. Moreover, additional
restrictions arise, if there is not enough oil or water to fill the cavities of the
preferred structure so that a less desirable structure must be formed.
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The self-assembly of the films is understood by an inspection of the
microscopic level. The molecule chain of the amphiphile consists of a
hydrophilic head (which prefers a water environment) and a hydrophobic tail
(which prefers oil). This double preference gives rise to the name
amphiphile. Therefore, these molecules lie side by side like pencils thus form-
ing a surface which separates oil from water with each end having its preferred
environment, and are therefore also called surfactants.

If we try to describe the mechanics of such a curved film by the theory
of shells, we get unexpected results since the film has the character of a
two-dimensional fluid with bending stiffness.

Of utmost practical importance is the fact that the surface tension of
a plane oil-water interface which is endowed with a surfactant film reaches
ultra-low values in a small temperature range.

Applications of microemulsions can be found in nanotechnology where
use is made of the small structures of the amphiphilic film.

1.2 Information for the Reader with a Background in
Chemical Physics

Although matter consists of atoms and molecules, the continuum approach
has been rather successful in the description of natural phenomena and the
prediction of the behaviour of engineering structures and processes. The
method, dating back to Euler and Cauchy, is applicable to both solid and
fluid matter. While investigations were often based on special constitutive
assumptions, e.g. linear ones, the modern rational mechanics, extended in the
famous encyclopedia article of Truesdell and Noll[18] —cf. also Krawietz[5]—
and resuscitating ideas of Euler, tries to embrace an utmost generality of the
assumptions.

We will apply the continuum approach on three levels. On the macro-
scopic level, the single phases of a mixture of oil, water, and amphiphile are
treated as homogeneous fluids. On the mesoscopic level, the monomolecular
film is considered as a surface endowed with a free energy. The continuum
mechanics of such a surface is well known to engineers ([1],[10]). They discern
surfaces with bending stiffness, called shells, e.g. a pipe made of steel, and
surfaces without bending stiffness, called membranes, e.g. canvas. (While the
monolayers are usually referred to as membranes with bending stiffness in
the literature on microemulsions, this is not in accord with the nomenclature
of mechanics.) In the theory of capillarity, a surface tension is attributed to
the surface of a bulk fluid, and this surface tension is isotropic in contrast to
the membrane forces within a shell or membrane.

It was Helfrich[3] who applied the concepts of shell theory to fluid sur-
faces, especially bilayers. He studied the effects of bending, stretching, and
tilt. Since he was interested in vesicles, he could neglect stretching and tilt
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and restrict himself to linear constitutive laws of bending, since the curvatures
are small.

Although his paper is cited frequently, it seems that hardly anyone ever
studied it in detail. So only the quadratic bending energy is extracted and
applied to monolayers. The internal forces of such a layer are then described
by the concept of a surface tension and hence the equilibrium by the mem-
brane equation, also called Laplace equation (mean curvature related to the
pressure difference). In Helfrich’s original paper, however, the correct internal
forces and the correct derivation of the equilibrium conditions can be found.

In this monograph, tilt is disregarded (this corresponds to Bernoulli’s
hypothesis in the theory of beams and Kirchhoff’s hypothesis in the theory
of plates), but bending and stretching are taken into account in a fully non-
linear manner. Therefore, the familiar curvature and saddle-splay moduli do
not appear anywhere.

A very important task is the explanation of the presence of the so-called
X point in the phase diagram which allows a three phase coexistence (mi-
croemulsion, oil excess and water excess simultaneously). This is not possible
within a purely linear mechanical theory, i.e. with a quadratic bending energy.
Nevertheless, explanations have been given, but with the help of additional
features like thermal undulations and statistical models ([11]). It was shown,
however in [7], that an explanation can be found on the basis of a symmetry
breaking which may be introduced by a non-quadratic bending energy.

The radii of curvature of the monolayer are often of the order of mag-
nitude of its thickness. So the film may not be treated as thin, and the
computation of volumes must be done accurately. Therefore, we finally de-
scend to the microscopic level and even apply the continuum approach there,
i.e we consider the film as a thick layer consisting of an infinite number of
sublayers. We assume the existence of plane states of stress and strain within
these sublayers. They give rise to a streching of the middle surface and a
bending of the layer.

It is a common misunderstanding, that each of the sublayers should
have the character of a lateral fluid, i.e. it should possess equal stresses in
all directions of the tangential plane. This is best discussed by temporarily
adopting the molecular model. The idea is correct if the film is actually plane.
Then the molecules will, in the mean, achieve equal distances in all directions,
as is to be expected with a fluid. But consider, e.g. a cylindrical shape of the
film. The upper and lower ends of the molecules have the same distance in
the axial direction. In the circumferential direction, however, the distance of
neighbouring molecules is larger at the upper end and smaller at the lower
end. So the distances are not identical in the axial and the circumferential
directions. If it is conceded that the mutual forces between the molecules are
influenced by their distance, then it is necessary to allow different stresses in
different directions in the continuum model.
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There may be doubts wether a continuum treatment is admissible on
the microscopic level, since there is only a limited number of atoms over the
thickness of the layer, which is identical with the length of the molecule of
the amphiphile. Moreover, we only discuss states of rest, although there is
surely a vivid thermal motion of the molecules.

Now, this question can only be answered a posteriori on the basis of the
results. At least we will see that this approach is flexible enough to predict a
symmetry breaking of the mesoscopic bending energy and hence an X point
in the macroscopic phase maps.

It would be desirable, of course, to have a description of mutual interac-
tions of the atoms and to compare its expense and its predictions with those
of the continuum model.

In the following, extensive quantities of the bulk fluids are referred not to
the volume, but to the mass. The reason is, that compressibility is allowed in
order to clarify the role of the pressure. The incompressible case is afterwards
obtained by a limit process.

1.3 Organization of the Investigation

We start in chapter 2 with the mesoscopic approach. The amphiphilic mono-
molecular film is regarded as a curved surface. Only when computing volumes,
we do not ignore the finite thickness h of the film. The total free energy of the
system consists of the elastic energy of bending and stretching of the film, the
energy of the monomeric solution of the amphiphile within oil or water, and
the potential energy of the environmental pressure. We derive the necessary
conditions of a minimum of that free energy and gain insight into the variety
of internal forces and moments within the film. (The details are elaborated
in appendix G.) The classical concept of a surface tension turns out to be
only applicable with plane or nearly plane surfaces. Moreover, we see that
the surface tension is identical neither with the surface energy density nor
with the membrane forces.

In chapter 3, the microscopic approach treats the film as a thick layer.
Not only stress resultants but the stress distribution over the thickness itself
is considered. The development is restricted to the case where the principal
axes of curvature and of the elastic stretch of the middle surface coincide.
(The discussion of the general case is postponed to appendix I.)

Chapter 4 demonstrates the transition from the microscopic to the meso-
scopic level by means of a special constitutive assumption. A quadratic
dependence of the strain energy on the logarithmic strains is postulated
for any layer of the film. Integration over the thickness yields constitutive
relations of the mesoscopic level, which are no longer quadratic. These are
compared with the familiar quadratic form of the bending energy proposed
by Helfrich.
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Special surfaces (spheres, cylinders, and triply periodic bi-continuous
structures) are the object of chapter 5. The pressures within the cavities
and the mass fractions of the monomerically solved amphiphile are derived
without assuming any special functional form of the free energy of the film
or of the solutions.

The description of our mixtures is essentially simplified if three assump-
tions are laid down: The plane surfaces which separate different phases are
negligible, the solubility of the amphiphile is identical in small cavities and
in the excess oil or water, and the compressibility of the bulk fluids can be
disregarded. These simplifications, the constitutive assumption of chapter 4
and another assumption on the solubility together are used in chapter 6 in
order to perform the transition from the mesoscopic to the macroscopic level.
Numerical computations allow the construction of phase maps, some of which
possess a characteristic X point. It is shown, that this X point only exists if a
positive prestress of the outer layers of the thick film is incorporated into the
constitutive model, which causes a symmetry breaking. Finally, it is demon-
strated that the coexistence of different types of structures may achieve a
smaller value of the total free energy than each of the structures alone.

The six chapters of the main part of this monograph present all essential
results without making use of tensor arguments.

The detailed development by means of advanced tensor calculus can be
found in the appendices. They contain a short introduction into symbolic
tensor notation, facts from the differential geometry of curved surfaces, the
derivation of the Euler-Lagrangean differential equations of our minimum
problem (in appendix F), the construction of a class of bi-continuous surfaces
(in appendix H), and, last not least, an investigation of the spinning drop
test (in appendix J). There it is explained why, in general, the evaluation of
this test on the basis of the simple concept of a surface tension gives useful
results, although we have pointed out, that the correct description of the
internal forces of a film is much more sophisticated.

1.4 The Main Results

The central messages of this monograph are:

• The internal forces and moments of an amphiphilic monomolecular film
are the same as those of a solid shell. The simple concept of a surface
tension, originating from the theory of capillarity, is not sufficient. That
concept can, however, be used in the treatment of plane or almost plane
surfaces between different phases. The bearing capacity of a fluid film
is much more restricted than that of a solid shell: If external torques
are not present, then tangential forces cannot be applied to a surface
in a relaxed state. Fortunately, this does not cause problems, since the
only loads on the film are the pressures of the bulk fluids.

5



• The local energy density of an amphiphilic film is not determined by the
local curvatures alone, but depends on the properties of the whole sys-
tem through the chemical potential, which dominates the apportioning
of the amphiphile content to the different subsystems.

• The pressures within the cavities may be related with the monomeric
solubility of the amphiphile.

• A numerical example gives the most important result that the contin-
uum approach on the microscopic level is able to explain a symmetry
breaking on the mesoscopic level and hence the existence of an X point
in the macroscopic phase map. This phenomenon is evoked by a posi-
tive prestress (i.e. a tension) in the outer layers of the thick amphiphilic
film.

Important remark: The results of this investigation are of a theoretical
nature. They give qualitative insight into possible phenomena. A quantitative
adjustment to experimental data of special microemulsions is not included
and should be the object of future activity.
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2 The Mesoscopic Approach

2.1 Composition of the Mixture

A mixture of water, oil, and amphiphile gives rise to a microemulsion and
perhaps to oil and water excesses above and below that microemulsion,
respectively. The dominant part of the amphiphile forms a monomolecular
film separating regions of oil and water within the microemulsion and plane
layers separating the microemulsion from the excesses. The rest is solved as
monomers within the oil or the water. We allow that different film structures
coexist. The structure with the number k is assumed to be composed of nk

identical cells (e.g. single spheres, single cylinders or the elementary unit from
which a triply periodic surface is built up.) The indices O, W, A, C, E, F will
denote oil, water, amphiphile, cell, excess, and film, respectively.

The masses of oil and water can be decomposed according to

mO =
∑

k

nkmOCk +mOE, mW =
∑

k

nkmWCk +mWE (2.1)

into parts which are contained within the cells of the film structures and
others which form the excesses.

The mass of the amphiphile can be decomposed as follows

mA =
∑

k

nk

(
mA,FCk +mA,OCk +mA,WCk

)
+mA,OE +mA,WE +

∑

j=O, W

mA,j

(2.2)
The single contributions denote those parts of the amphiphile which form the
film of the cells of some structure, the monomers which are solved in the oil
and the water within these cells or in the oil and the water excess, and that
part which forms the plane layers separating the microemulsion from the oil
and the water excess.

We define the following solution parameters which characterize the mass
fraction of the solution of the amphiphile within the cells of the different
structures

kOk =
mA,OCk

mOCk
, kWk =

mA,WCk

mWCk
(2.3)

and within the excesses

kOE =
mA,OE

mOE
, kWE =

mA,WE

mWE
(2.4)
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We denote by µj (j = O, W) the mass density (mass referred to the unit area)
of the plane layers (their area Aj is determined by the geometric situation),
and by µ the mass density of the curved film (not necessarily constant over
the film). Neither the number of cells nk nor the area of the middle surface
of a cell ACk nor the total area nkACk of a structure is known a priori.

Equation (2.2) becomes

g ≡ mA −
∑

k

nk

(∫

ACk

µdA+ kOkmOCk + kWkmWCk

)

−kOEmOE − kWEmWE −
∑

j=O, W

µjAj = 0 (2.5)

The free energy F of the system consists of contributions of the curved film,
of the oil (with solved amphiphile), of the water (with solved amphiphile), of
the plane layers, and of the environmental pressure pe. The total volume of
the system (microemulsion, oil and water excess) is denoted by V .

F =
∑

k

nk

(
FFCk + FOCk + FWCk

)
+ FOE + FWE +

∑

j=O, W

Fj + peV (2.6)

We introduce the energy density of oil and water as the ratio of the energy
and the mass of the solvent. It depends, of course, on the local values of the
solution parameter and of the pressure. The pressure of the excesses is the
environmental pressure pe, while there may be different pressures pOk and
pWk of the oil and water within the cells.

FOE = fOE(kOE, pe)mOE , FWE = fWE(kWE, pe)mWE (2.7)

FOCk = fOk(kOk, pOk)mOCk , FWCk = fWk(kWk, pWk)mWCk (2.8)

We further define the energy densities wO and wW of the plane layers and w
of the curved film as the energy referred to the actual unit area. We assume
that wO and wW depend on the mass densities µO and µW, respectively,
and that w depends on the local mass density µ and on the local principal
curvatures c1 and c2. So one aspect of w is that of a bending energy.

Fj = wj(µj)Aj , FFCk =
∫

ACk

w(c1, c2, µ) dA (2.9)

Introduction into (2.6) yields
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F =
∑

k

nk

(∫

ACk

w(c1, c2, µ) dA

+fOk(kOk, pOk)mOCk + fWk(kWk, pWk)mWCk

)

+fOE(kOE, pe)mOE + fWE(kWE, pe)mWE +
∑

j=O,W

wj(µj)Aj + peV

(2.10)

2.2 Computation of Volumes

Let us consider a bi-continuous structure or spheres or cylinders which con-
tain oil. Moreover, let %O and %A denote the mass density (mass per unit
volume) of the oil and the monomeric amphiphile within it, respectively.
These densities depend on the oil pressure within the cell. Then, with (2.3),
we obtain the following relation between the volume VOCk of the cavity and
the mass mOCk of the enclosed oil.

VOCk =
mOCk

%O(pOk)
+
mA,OCk

%A(pOk)
=

(
1

%O(pOk)
+

kOk

%A(pOk)

)
mOCk (2.11)

With the abbreviation

υOk =
1

%O(pOk)
+

kOk

%A(pOk)
(2.12)

we arrive at

VOCk = υOk mOCk (2.13)

Introducing this into (2.1) we obtain the mass of the oil excess

mOE = mO −
∑

k

nkυ
−1
OkVOCk (2.14)

In a similar manner, we define

υOE =
1

%O(pe)
+

kOE

%A(pe)
(2.15)

and arrive at a relation between the mass and the volume of the oil excess

VOE = υOEmOE (2.16)

If O is replaced by W everywhere, then the corresponding formulae for water
arise.
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The volume of the film material (of thickness h) of one cell amounts to

VFCk =
∫

ACk

(
h+ c1c2

h3

12

)
dA (2.17)

according to equation (D.11) in appendix D.
The total volume of the system is

V =
∑

k

nk

(
VFCk + VOCk + VWCk

)
+ VOE + VWE +

∑

j=O, W

hAj (2.18)

or

V =
∑

k

nk

(∫

ACk

(
h+ c1c2

h3

12

)
dA

+
(
1− υOEυ

−1
Ok

)
VOCk +

(
1− υWEυ

−1
Wk

)
VWCk

)

+υOEmO + υWEmW +
∑

j=O, W

hAj (2.19)

Introducing this and (2.14) into (2.10) we obtain

F =
∑

k

nk

(∫

ACk

(
w(c1, c2, µ) + pe

(
h+ c1c2

h3

12

))
dA

+
(
fOk(kOk, pOk)− fOE(kOE, pe) + pe

(
υOk − υOE

))
υ−1

OkVOCk

+
(
fWk(kWk, pWk)− fWE(kWE, pe) + pe

(
υWk − υWE

))
υ−1

WkVWCk

)

+
(
fOE(kOE, pe) + peυOE

)
mO +

(
fWE(kWE, pe) + peυWE

)
mW

+
∑

j=O,W

(
wj(µj) + peh

)
Aj (2.20)

2.3 Elastic Behaviour of the Fluids

We assume the fluids to be elastic. If the mass of the fluid within a cell — say,
oil with solved amphiphile — remains constant and only the volume changes,
then the rate of the free energy of the fluid is equal to the isothermal power

(
fOk(kOk, pOk)mOCk

)•
= −pOkV̇OCk (2.21)
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and hence, with (2.13),

∂fOk

∂pOk
mOCk ṗOk = −pOk

∂υOk

∂pOk
mOCk ṗOk (2.22)

or

∂fOk

∂pOk
= −pOk

∂υOk

∂pOk
= −pOk

∂

∂pOk

(
1

%O(pOk)
+

kOk

%A(pOk)

)
(2.23)

Integration by parts yields

fOk(kOk, pOk) =
∫ pOk

p=0

(
1

%O(p)
− 1
%O(pOk)

)
dp

+kOk

∫ pOk

p=0

(
1

%A(p)
− 1
%A(pOk)

)
dp+ fOk(kOk, pOk = 0)

(2.24)

which reveals the dependence of the energy on the pressure.

2.4 The Extended Energy

If there is no oil excess, then (2.14) with mOE = 0 yields the constraint

hO ≡ mO −
∑

k

nkυ
−1
OkVOCk = 0 (2.25)

If there is no water excess then there exists a similar constraint

hW ≡ mW −
∑

k

nkυ
−1
WkVWCk = 0 (2.26)

Moreover, the side condition (2.5) (g = 0) is valid in any case. We multiply
the three conditions with Lagrangean parameters and add them to the free
energy, thus obtaining the extended energy

E = F + f g + yO hO + yW hW (2.27)

In the absence of constraints, we define yO = 0 and/or yW = 0. Otherwise we
have hO = 0, kOE = 0, fOE(kOE, pe) + peυOE = 0, AO = 0 and/or hW = 0,
kWE = 0, fWE(kWE, pe) + peυWE = 0, AW = 0. Since also g = 0 in any case,
the value of E is the same as that of F for a real system.
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We obtain

E =
∑

k

nk

(∫

ACk

(
w(c1, c2, µ) + pe

(
h+ c1c2

h3

12

)
− fµ

)
dA

+
(
fOk(kOk, pOk)− fOE(kOE, pe) + pe

(
υOk − υOE

)

−f (
kOk − kOE

)− yO

)
υ−1

OkVOCk

+
(
fWk(kWk, pWk)− fWE(kWE, pe) + pe

(
υWk − υWE

)

−f (
kWk − kWE

)− yW

)
υ−1

WkVWCk

)

+
(
fOE(kOE, pe) + peυOE − f kOE

)
mO

+
(
fWE(kWE, pe) + peυWE − f kWE

)
mW

+
∑

j=O,W

(
wj(µj) + peh− fµj

)
Aj + f mA + yOmO + yWmW

(2.28)

We want to find the minimum of the free energy F of the system under the
mentioned side conditions. This means that the extended energy E is minimal
with respect to unconstrained variations. Now, we can vary the degrees of
freedom f , kOk, kWk, pOk, pWk, nk, the field µ and the shape of the cells,
which determines the fields c1, c2 of the principal curvatures, the oil-sided
and water-sided cavity volumes VOCk, VWCk, and the area ACk. In the case
of constraints, there are, in addition, the degrees of freedom yO and yW, in
the case of excesses, we have instead kOE, kWE and µO, µW. If the energy
takes its minimal value then the derivatives of E with respect to the degrees
of fredom and the variation of E under any variation of the unknown fields
must vanish.

2.5 Necessary Conditions of a Minimum

The postulate that the derivatives of E with respect to kOk and pOk must
vanish yields the following two equations for the structure with number k —
note (2.12).

∂fOk

∂kOk
− f −

(
fOk(kOk, pOk)− fOE(kOE, pe)− peυOE

−f
(
kOk − kOE

)
− yO

)
1

υOk %A(pOk)
= 0 (2.29)
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∂fOk

∂pOk
−

(
fOk(kOk, pOk)− fOE(kOE, pe)− peυOE

−f
(
kOk − kOE

)
− yO

)
1
υOk

∂υOk

∂pOk
= 0 (2.30)

The last equation together with (2.23) leads to

pOk = −
(
fOk(kOk, pOk)− fOE(kOE, pe)−peυOE− f

(
kOk−kOE

)
− yO

)
1
υOk

(2.31)
and insertion into (2.29) gives

f =
∂fOk

∂kOk
(kOk, pOk) +

pOk

%A(pOk)
(2.32)

(2.31) with (2.32), (2.12) and (2.15) implies

yO = fOk(kOk, pOk)− fOE(kOE, pe)−
(
kOk − kOE

)∂fOk

∂kOk
(kOk, pOk)

+
(

1
%O(pOk)

+
kOE

%A(pOk)

)
pOk −

(
1

%O(pe)
+

kOE

%A(pe)

)
pe (2.33)

In case of a constraint, the last condition acts as a prescription for the cal-
culation of yO, which shrinks to

yO = fOk(kOk, pOk)− kOk
∂fOk

∂kOk
(kOk, pOk) +

pOk

%O(pOk)
(2.34)

If the dimensions of the cells of two structures — which we think num-
bered by k = 1 and k = 2 — are of the same order of magnitude, then it will
be reasonable to assume fO1 = fO2. If, moreover, the two variables kOk and
pOk can uniquely be calculated from the two non-linear equations (2.32) and
(2.33), then we must have kO1 = kO2 and pO1 = pO2. So the mass fractions
and the pressures within the different structures must be identical. (If, how-
ever, the cells of structure 1 are much smaller than those of structure 2 —
maybe the diameter of its cavities is of the order of magnitude of the length of
the amphiphilic molecule —, then it seems imaginable that fO1 differs from
fO2 and so the mass fractions of the amphiphilic monomers and the pressure
may differ between the two structures.)

If an oil excess is present, then the postulate that the derivative of E
with respect to kOE must vanish, yields the equation — note (2.15) —

f =
∂fOE(kOE, pe)

∂kOE
+

pe

%A(pe)
(2.35)
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Moreover, we have to put yO = 0, and (2.33) then represents a connexion
between kOk, pOk and kOE. If (2.32) and (2.35) are introduced, then this
connexion may be given the form

fOk(kOk, pOk)− kOk
∂fOk

∂kOk
(kOk, pOk) +

pOk

%O(pOk)

= fOE(kOE, pe)− kOE
∂fOE

∂kOE
(kOE, pe) +

pe

%O(pe)
(2.36)

If a plane layer between the microemulsion and the oil excess is present, then
we must have

f =
dwO(µO)
dµO

(2.37)

Analogous conditions result if O is replaced by W.
The derivatives of E with respect to f and — if there is no excess — to

yO and yW are zero, if the conditions g = 0 and hO = 0, hW = 0 according
to (2.5), (2.25), (2.26) are satisfied.

The sum over k in the extended energy (2.28) may considerably be sim-
plified by means of (2.31) to read

∑

k

nk

(∫

ACk

(
w(c1, c2, µ) + pe

(
h+ c1c2

h3

12

)
− fµ

)
dA

−(
pOk − pe

)
VOCk −

(
pWk − pe

)
VWCk

)
(2.38)

The postulate that the derivative of E with respect to nk must vanish yields
the following condition for each structure k.

f =

∫
ACk

(
w + pe

(
h+ c1c2

h3

12

))
dA− (

pOk − pe

)
VOCk −

(
pWk − pe

)
VWCk∫

ACk
µdA

(2.39)
Actually, nk is a discrete and not a continouous variable, so that differentia-
tion seems inappropriate. But since the number nk will be rather large, our
approximate approach will hardly cause a serious error.

The minimum of E requires also that the variation of E with respect to
the field µ vanishes.

δE =
∑

k

nk

∫

ACk

(
∂w(c1, c2, µ)

∂µ
− f

)
δµ dA = 0 (2.40)

Since the field δµ is arbitrary, the condition

f =
∂w(c1, c2, µ)

∂µ
(2.41)

must hold all over the film.
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2.6 The Physical Meaning of these Conditions

The Lagrangean parameter f allows an illuminating interpretation. It gives
the amount of free energy which is required in order to import a unit mass
of the amphiphile into one of the subsystems. Equation (2.32) describes the
energy needed for the solution of additional monomers within the cells, (2.35)
for the solution within the excesses, (2.37) for the implementation in the
plane layers between the microemulsion and the excesses, and (2.41) for the
insertion into the curved film. (2.39) represents the energy which is needed to
create the film of additional cells while the fluid content within the totality of
the cells remains constant. The volume of this content is therefore increasing,
and work is done by its pressure. Our necessary conditions state, that all these
amounts of energy must equal the same value of f , so that the exchange of
mass between any two subsystems does not alter the minimum value of the
free energy of the whole system. The physical quantity f is closely related
to the concept of a chemical potential. However, the chemical potential is
defined as the molar free enthalpy, while f denotes the density of the free
energy (per unit mass).

The Lagrangean parameter yO may also be given a physical interpreta-
tion. According to (2.34), it is equal to an amount of free energy which can
be seen to be required in order to import a unit mass of oil into a cell. If an
oil excess exists, then equation (2.36) states that this energy must equal the
energy which is needed to import a unit mass of oil into the excess. So an
exchange of oil between the cell and the excess does not alter the energy of
the whole system.

2.7 Equilibrium of the Film

Finally, E must also be a minimum with respect to any change of the shape
of the film. The evaluation of this condition requires some knowledge of
advanced tensor calculus and is worked out in the appendices F and G. The
Euler-Lagrangean differential equations of our variational problem can be
found in (G.29) and (G.30) with (F.18). The condition

qT = 1T · Ḿ · ∇T (2.42)

states that the operator of transverse forces qT equals the tangential part of
the divergence of the tensor of moments M. This ensures the equilibrium of
moments around any axis within the tangential plane. The condition

−T : C−∇T · qT =

pWk

(
1 + trC

h

2
+ detC

h2

4

)
− pOk

(
1− trC

h

2
+ detC

h2

4

)
(2.43)

ensures the equilibrium of forces normal to the middle surface. The first term
on the left-hand side represents the contribution of the tensor of membrane
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forces T due to the curvature C, while the second one, the divergence of
the transverse forces, originates in bending. On the right-hand side, we see
the difference of the pressures on the two sides of the film, both reduced to
the middle surface. The equilibrium of forces in any tangential direction is
automatically satisfied, since the membrane forces of the film have the special
form

T = (w − fµ)1T + C ·M
= (w − fµ+ c1m1) e1 ⊗ e1 + (w − fµ+ c2m2) e2 ⊗ e2 (2.44)

according to (F.20), while (F.19) shows the tensor of moments to be given
by

M = −∂w
∂C

= − ∂w
∂c1

e1 ⊗ e1 − ∂w

∂c2
e2 ⊗ e2 (2.45)

Here e1 and e2 denote directions of principal curvatures. Hence the principal
membrane forces and moments are obtained from

t1 = w−fµ+c1m1 = w−fµ−c1 ∂w
∂c1

, t2 = w−fµ+c2m2 = w−fµ−c2 ∂w
∂c2

(2.46)

m1 = − ∂w
∂c1

, m2 = − ∂w
∂c2

(2.47)

If the surface energy density w would not depend on the curvature, then we
had M = 0 and hence qT = 0 according to (2.42). Moreover, according to
(2.44), T = (w − fµ)1T would be isotropic and the left-hand side of (2.43)
would become −(w−fµ)trC. If, in addition, f = 0, then the energy density
w equals the isotropic surface tension and we arrive at the classical theory of
capillarity.

However, since w depends on the curvature, the internal forces of the
amphiphilic film turn out to be much more copious than those of the classical
theory of capillarity. Actually they are as diverse as those of a solid shell. On
the other hand, the load carrying behaviour of our fluid film is much more
special than that of a solid shell. As is shown in appendix G.2, tangential
forces cannot be applied to the film unless also an external torque density
acts on the surface.

2.8 The Internal Forces of a Fluid Film

Figure 2.1 illustrates the internal forces in the case where α and β are not
lines of principal curvatures. Let e be a unit vector normal to a cut and g a
unit vector parallel to the cut (cf. appendix E, especially (E.6)). For example,
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e = eα, g = eβ , if the cut is characterized by a constant value of α. The unit
normal n of the surface is orthogonal to these two tangential vectors.

The vector of boundary force (per unit length) on the cut is

f = (T + n⊗ qT ) · e =
(
e ·T · e

)
e +

(
g ·T · e

)
g + (qT · e)n (2.48)

It possesses components tαα = e ·T · e, tαβ = tβα = g ·T · e, and qα = qT · e
in the directions of e, g, and n, respectively, called membrane normal force,
membrane shear force, and transverse force.

The vector of boundary torque (per unit length) is given by

m = n×M · e =
(
e ·M · e

)
g −

(
g ·M · e

)
e (2.49)

It possesses components mαα = e ·M · e, and mαβ = mβα = g ·M · e in the
directions of g and −e, respectively, called bending moment and torsional
moment.

If the cut is orthogonal to a direction of principal curvature, then no
membrane shear force and no torsional moment exists, as is seen from equa-
tions (2.44) and (2.45).

Since the description of fluid films with the concept of surface tension
is rather popular (e.g. [4]), the deviations from classical capillarity shall be
summarized once more:

• The membrane forces are not the same in all directions and hence can-
not be characterized by the concept of one single surface tension. This
implies that there are not only normal forces but also shear forces on
cuts which do not coincide with a principal direction of curvature.

• A tensor of moments exists which describes bending moments and tor-
sional moments within the surface.

• According to equation (2.42), a tangential variability of the moments
requires the existence of transverse forces (perpendicular to the sur-
face). These assist the membrane forces in bearing the surface loading.

Most of these features were already discussed by Helfrich (1973) [3] in the
context of a quadratic energy density and on the basis of physical arguments.
(His use of the termini normal and tangential in the description of the internal
forces is opposite to ours, since he refers them to the normal vector n of the
surface and not to the normal vector e of the cut.)

However, we must be aware of the following fact. Helfrich assumed the
energy density of a film to depend on the local curvatures alone, i.e. w(c1, c2).
Our energy density, however has the more general structure w(c1, c2, µ). Now,
as (2.41) shows, µ is not simply a function of c1 and c2 but depends on the
value of the variable f , too, which has the character of a chemical potential
and reflects the environment into which the film is embedded.
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2.9 Global Equilibrium

The differential equations (2.42) and (2.43) describe the local equilibrium
of the film. They were obtained by admitting an arbitrary change of the
geometry of the film structure. A statement on global equilibrium results if
we restrict the change of geometry to an affine magnification of the middle
surface. We notice that the actual geometry — with characteristic length L—
may be obtained by affine magnification from the surface with characteristic
length 1, the properties of which will be denoted by a hat. We write that part
of the extended energy which is related with the geometry of a single cell in
the form — cf. (2.38), (F.1), (F.2) —

Φ =
∫

AC

(
w(c1, c2, µ) + pe

(
h+ c1c2

h3

12

)
− fµ

)
dA

−(pO − pe)VOC − (pW − pe)VWC

=
∫

ÂC

(
w

( ĉ1
L
,
ĉ2
L
, µ

)
+ pe

(
h+

ĉ1ĉ2
L2

h3

12

)
− fµ

)
dÂL2

−(pO − pe)VOC(L)− (pW − pe)VWC(L) (2.50)

We find
∂cj
∂L

= − ĉj
L2

= −cj
L

(2.51)

and, with (2.46), (2.47), obtain the necessary condition of a minimum

0 =
∂Φ
∂L

= −
∫

ÂC

( ∂w
∂c1

c1 +
∂w

∂c2
c2

)
dÂL+

∫

ÂC

(
w + peh− fµ

)
dÂ 2L

−(pO − pe)
dVOC

dL
− (pW − pe)

dVWC

dL

(2.52)

or ∫

AC

(
2
(
w + peh− fµ

)
+ c1m1 + c2m2

)
dA =

∫

AC

(
t1 + t2 + 2peh

)
dA

= (pO − pe)L
dVOC

dL
+ (pW − pe)L

dVWC

dL
(2.53)

This is a global relation between the internal forces of the film and the pres-
sures in the oil and the water, whereas (2.43) represents a local relation. On
the other hand, (2.39) may be given the form
∫

AC

(
w+ peh− fµ

)
dA+ pe

h3

12

∫

AC

c1c2 dA = (pO − pe)VOC + (pW − pe)VWC

(2.54)
If the geometry of the middle surface and the field µ and hence also f — note
(2.41) — is known, then (2.53) and (2.54) constitute two linear equations for
the computation of the pressures pO and pW.
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2.10 The Surface Tension

While the concept of a surface tension is not meaningful in the context of a
curved amphiphilic film, it may well be applied in the case of a plane surface
which separates two phases. The contribution of the last two terms in (2.10)
to the free energy of such a surface is

F =
(
wj(µj) + peh

)
Aj (2.55)

If the tube with the mixture is tilted, then the area will increase. If the
starting state is relaxed, then we may assume, without loss of generality (cf.
appendix I.6), the conservation of the mass of the surface

m = µjAj = const =⇒ µjδAj + δµjAj = 0 (2.56)

Then we can define the surface tension tS by

δF =
(
wj +peh

)
δAj +

dwj

dµj
δµjAj =

(
wj +peh−µj

dwj

dµj

)
δAj = tSδAj (2.57)

Since the surface is plane, we have c1 = c2 = 0, and (2.46), (2.37) yield equal
principal membrane forces

t1 = t2 = wj − fµj = wj − µj
dwj

dµj
= tS − peh (2.58)

So the surface tension describes the isotropic state of the membrane forces
apart from a contribution of the environmental pressure. Note that, gener-
ally, neither the surface tension nor the membrane forces are equal to the
surface energy density wj . Moreover, there will be an isotropic state of bend-
ing moments, too, in the plane amphiphilic surface. The quantity or even the
existence of the bending moments cannot be inferred from the concept of the
surface tension.

It is important to take the environmental pressure pe into account, at
least in the case of ultra-low surface tensions, where the last two terms in
(2.58) may be of the same order of magnitude.

The surface tension will reappear in appendix J, where the spinning drop
test is investigated, since the film around the drop can be regarded as almost
plane, as will be demonstrated.

2.11 Special theories

In the papers [6] and [7], two special theories were exploited that did not care
for the variable mass density of the film or the monomeric solubility of the
amphiphile. It may be interesting, to clarify the relation to the more general
setting presented above.

The framework of [6] is obtained, if we do not consider f as a quantity
that has to be determined but simply put f = 0. Then the conditions (2.32),
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(2.35), which concern the solubility, are not applicable, while (2.39) could
not be considered, since the paper discussed states of equilibrium and not
states of minimal free energy. (The condition that the derivative of the free
energy with respect to the number n of cells be zero is not a condition of
equilibrium!) According to (2.41), we can compute the mass density of the
relaxed state from

0 = f =
∂w(c1, c2, µ)

∂µ
=⇒ µrel = µrel(c1, c2) (2.59)

So the energy density could, indeed, be expressed as a function of the local
curvatures alone.

w(c1, c2, µ) = w(c1, c2, µrel(c1, c2)) = wrel(c1, c2) (2.60)

The framework of [7] is obtained, if we neglect the monomeric solubil-
ity, the environmental pressure pe, the compressibility of the bulk fluids, the
mass and energy of the separating surfaces between the microemulsion and
the excesses, and consider the mass density µ as a fixed quantity, thus exclud-
ing an elastic area stretch. Moreover, only one kind of structure is allowed
simultaneously. The free energy (2.10) reduces to

F = n

∫

AC

w(c1, c2) dA (2.61)

the mass of the amphiphile is given by

mA = nµ

∫

AC

dA (2.62)

while the constraints (2.25), (2.26), when present, simplify to

mO − n%OVOC = 0 (2.63)

mW − n%WVWC = 0 (2.64)

In addition, the film is regarded as thin and hence a simplified computation
of the volumes performed.

In the mentioned paper, various structures are discussed and that with
the actual minimum ratio

F

mA
=

∫
AC

w(c1, c2) dA

µ
∫

AC
dA

(2.65)

eventually subject to the constraints (2.63), (2.64), is used for the construc-
tion of phase maps. A non-quadratic energy density w(c1, c2) is used which
implies symmetry breaking and allows the description of the coexistence of a
microemulsion with both a water and an oil excess.
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3 The Microscopic Approach

3.1 Deformation of a Thick Layer

The mesoscopic approach, discussed in the preceding chapter, treats a mono-
molecular film as a material surface endowed with a free energy. The thickness
of the film is used only to obtain correct values of volumes.

In contrast to this, the microscopic approach treats a monomolecular
amphiphilic film as a layer of thickness h and studies the distribution of the
stresses over the thickness. The co-ordinate normal to the middle surface is
denoted by z, and the matter fills the space between z = −h/2 and z = h/2.
(A fixed neutral surface, popular in the linear theory, does not exist in a
non-linear context.) An even more refined approach would be to model the
molecules as pencils of length h lying side by side in the z-direction with
interaction forces between them. The intensity of these forces will depend
on the mutual distance of the molecules. Since the film is curved, this dis-
tance varies with z. But even in a plane film, where the distance is constant,
the forces will surely not be constant along z. For each z, there will be a
characteristic distance of the molecules such that the forces vanish.

Now going back to our layer model we see that we must admit a state of
elastic prestress. Moreover, deformations of the film may be elastic,
corresponding to a change of distance of the molecules, or inelastic, due
to a rearrangement of the molecules or an exchange of molecules with the
environment. Furthermore it is helpful to imagine the thick layer to consist
of a deck of infinitesimally thin layers, each characterized by its value of the
coordinate z. We simply refer to any one of them as to the layer at z.

In the beginning, we consider the thick layer in a placement, where the
middle surface is plane. We cut out a brick with length ds1b and ds2b, and
height h. The area element of the middle surface is then dAb = ds1b ds2b.
Moreover, we assume that the layer at z = 0 is free of stress in this basic
placement. Then the layers with z 6= 0 will usually not be free of stress.
We assume, however, that their prestress is isotropic. So we could think of
applying an isotropic unloading stretch λ1u(z) = λ2u(z) = λ−1

p (z), which
changes the length and width of the brick into

ds1bz = λ−1
p (z) ds1b , ds2bz = λ−1

p (z) ds2b (3.1)

and makes the layer at z free of stress. But we can also say, that, in the
basic placement, the layer at z possesses already elastic prestretches λp in

22



the directions 1 and 2, which cause the prestress.
Next, we apply elastic stretches λe1 and λe2 which change the length and

width of the brick into

ds1 = λe1 ds1b , ds2 = λe2 ds2b (3.2)

and the area element into dA = ds1 ds2 = λe1λe2 dAb.
Finally, the plane layer is bent in the directions 1 and 2. The principal

curvatures and the corresponding radii of curvature of the middle surface are

c1 =
1
R1

, c2 =
1
R2

(3.3)

The radii of curvature of a layer at z are then R1−z and R2−z, respectively,
so that we obtain

ds1z =
R1 − z

R1
ds1 = (1− c1 z) ds1 , ds2z =

R2 − z

R2
ds2 = (1− c2 z) ds2

(3.4)
and the area element becomes dAz(z) = ds1zds2z = (1− c1 z)(1− c2 z) dA.

The elastic stretch of the layer at z is therefore seen to be the succession
of an isotropic prestretch of this layer, the elastic stretch of the middle surface
and a stretch due to bending.

λze1(z) = λp(z)λe1 (1− c1 z) , λze2(z) = λp(z)λe2 (1− c2 z) (3.5)

We assume for the sake of simplicity that the thickness h of the layer does not
change during a deformation process. Other assumptions would be possible,
e.g. conservation of the local volume.

The crucial point of our procedure is that 1 and 2 are principal directions
of both the stretch of the middle surface and the bending of the layer.

The more general case, where the tensors of stretching and bending are
not co-axial, is treated in appendix I. That investigation reveals that the co-
axial case is one which gives the free energy a stationary value. Since we are
interested in structures with minimal free energy, the co-axial case turns out
to be a promising candidate.

It will be useful to introduce the logarithmic elastic principal strains

ε1(z) = lnλze1(z) , ε2(z) = lnλze2(z) (3.6)

of the layer at z, the logarithmic prestrain

εp(z) = lnλp(z) (3.7)

— with εp(0) = 0 — and the logarithmic elastic principal strains of the
middle surface

εe1 = lnλe1 , εe2 = lnλe2 (3.8)
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as well as their sum and difference

εes = εe1 + εe2 , εed = εe1 − εe2 (3.9)

Then the logarithm of (3.5) yields

ε1(z) = εp(z) +
1
2
(εes + εed) + ln

(
1− c1z

)

ε2(z) = εp(z) +
1
2
(εes − εed) + ln

(
1− c2z

)
(3.10)

We will make use of the following two elastic strain invariants

I1(z) = ε1(z) + ε2(z) = 2εp(z) + εes + ln(1− c1 z) + ln(1− c2 z) (3.11)

I2(z) =
(
ε1(z)− ε2(z)

)2 =
(
εed + ln(1− c1 z)− ln(1− c2 z)

)2

(3.12)

Hitherto we restricted our attention to elastic deformations. But inelastic
ones are also possible. They change the length and width ds1b and ds1b of
the basic placement (where the middle surface is free of stress). We define

δs =
˙ds1b

ds1b
+

˙ds2b
ds2b

, δd =
˙ds1b

ds1b
−

˙ds2b
ds2b

(3.13)

Now, according to (3.2), (3.8), we have

ds1 = λe1 ds1b = exp(εe1) ds1b , ds2 = λe2 ds2b = exp(εe2) ds2b (3.14)

and hence with (3.9)

˙ds1
ds1

=
1
2
(
ε̇es + ε̇ed + δs + δd

)
,

˙ds2
ds2

=
1
2
(
ε̇es − ε̇ed + δs − δd

)
(3.15)

Moreover, since

dAb = ds1bds2b , dA = ds1ds2 = exp(εes) dAb (3.16)

we obtain
˙dAb

dAb
=

˙ds1b
ds1b

+
˙ds2b

ds2b
= δs (3.17)

and
˙dA
dA

=
˙ds1
ds1

+
˙ds2
ds2

= ε̇es + δs (3.18)

If δs 6= 0, then the area dAb of the basic placement changes. On the other
hand, the condition δs = 0, δd 6= 0 characterizes a shear of the basic place-
ment alone. If we adopt the model of the pencil-like molecules, then a change
of dAb requires the exchange of matter with the environment so that the
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number of molecules per unit area of the basic placement is always constant.
The shear, however, represents a mere rearrangement of the molecules. The
possibility of such a rearrangement characterizes the fluidic nature of the
monomolecular film. Both kinds of inelastic deformation do not change the
average mutual distance of the molecules and hence the stresses, as long as
the elastic strains remain constant.

3.2 Mass

The mass of our brick is given by

dm =
∫ h/2

z=−h/2

%(z) dAz(z) dz =
∫ h/2

z=−h/2

(1− c1z)(1− c2z) %(z) dz dA

≡ µdA = µ exp
(
εes

)
dAb = µb dAb (3.19)

Here %(z) denotes the mass density (referred to the actual unit volume) of
the layer at z, (1− c1z)(1− c2z) %(z) would be the density before bending, µ
shall be called the mass density of the thick layer (referred to the actual unit
area of the middle surface) and µb the mass density in the basic placement
of the thick layer. Note also that, during a bending, the mass density µ does
not change while %(z), of course, does.

Although the basic placement may change with time, its mass density
must always be the same. The derivative of (3.19) therefore gives

µ̇b =
(
µ exp

(
εes

))•
=

(
µ̇+ µ ε̇es

)
exp

(
εes

)
= 0 =⇒ µ̇

µ
= − ε̇es (3.20)

The mass which is supplied from the environment per unit time and unit area
of the actual middle surface shall be denoted by µ̃. Then the rate of mass
can, with (3.18), be written

˙dm = µ̃ dA =
(
µdA

)• =

(
µ̇

µ
+

˙dA
dA

)
µdA = δs µdA (3.21)

from which we infer, with (3.17),

µ̃

µ
= δs =

˙dAb

dAb
(3.22)

A positive mass supplement is seen to increase the area of the basic placement.

3.3 Power and Energy

The elastic behaviour of all layers is assumed to be isotropic. Thus our brick
contains the strain energy
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∫ h/2

z=−h/2

wz

(
I1(z), I2(z)

)
dAz(z) dz

=
∫ h/2

z=−h/2

(1− c1z)(1− c2z)wz

(
I1(z), I2(z)

)
dz dA

= w
(
c1, c2, εes, εed

)
dA (3.23)

While wz denotes the energy per unit volume of the layer at z, w refers the
energy of the thick layer to the actual unit area of the middle surface.

The rate of energy can be written, with (3.18),

(
w dA

)• =

(
ẇ + w

˙dA
dA

)
dA

=
(
∂w

∂c1
ċ1 +

∂w

∂c2
ċ2 +

∂w

∂εes
ε̇es +

∂w

∂εed
ε̇ed + w

(
˙εes + δs

))
dA (3.24)

with

∂w

∂c1
= −

∫ h/2

z=−h/2

(1− c1z)(1− c2z)
(
wz +

∂wz

∂I1
+ I0(z)

∂wz

∂I2

)
z

1− c1z
dz

∂w

∂c2
= −

∫ h/2

z=−h/2

(1− c1z)(1− c2z)
(
wz +

∂wz

∂I1
− I0(z)

∂wz

∂I2

)
z

1− c2z
dz

∂w

∂εes
=

∫ h/2

z=−h/2

(1− c1z)(1− c2z)
∂wz

∂I1
dz

∂w

∂εed
=

∫ h/2

z=−h/2

(1− c1z)(1− c2z) I0(z)
∂wz

∂I2
dz (3.25)

and the abbreviation

I0(z) = 2
(
εed + ln(1− c1 z)− ln(1− c2 z)

)
(3.26)

Let σ1(z) and σ2(z) denote the normal stresses (force per unit area) on the
surfaces of the brick which are normal to the directions 1 and 2. The power
exerted during a deformation of the brick is, with (3.4), (3.15),
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P dA =
∫ h/2

z=−h/2

(
σ1(z) ds2z

˙ds1z + σ2(z) ds1z
˙ds2z

)
dz

=
∫ h/2

z=−h/2

(
σ1(z) ds2(1− c2z)

(
˙ds1(1− c1z)− ds1ċ1z

)

+σ2(z) ds1(1− c1z)
(

˙ds2(1− c2z)− ds2ċ2z
))

dz

=
(
−m1ċ1 −m2ċ2 + (t̃s + t̃d)

˙ds1
ds1

+ (t̃s − t̃d)
˙ds2
ds2

)
dA

=
(
−m1ċ1 −m2ċ2 + t̃s

(
ε̇es + δs

)
+ t̃d

(
ε̇ed + δd

))
dA

(3.27)

with

m1 =
∫ h/2

z=−h/2

(1− c1z)(1− c2z)σ1(z)
z

1− c1z
dz

m2 =
∫ h/2

z=−h/2

(1− c1z)(1− c2z)σ2(z)
z

1− c2z
dz (3.28)

t̃s =
∫ h/2

z=−h/2

(1− c1z)(1− c2z)
σ1(z) + σ2(z)

2
dz

t̃d =
∫ h/2

z=−h/2

(1− c1z)(1− c2z)
σ1(z)− σ2(z)

2
dz (3.29)

We observe that m1 is nothing but the moment of the stresses which act in
the direction 1 with respect to the middle surface and referred to the unit
length on the middle surface. It is known as the bending moment in the
theory of shells.

m1 =
1
ds2

∫ h/2

z=−h/2

z σ1(z) ds2z dz (3.30)

In a similar manner, we can refer the resulting force of these stresses to the
unit length on the middle surface and obtain what is called the membrane
normal force in the theory of shells. The following relation with the quantities
of (3.28), (3.29) exists

t1 =
1
ds2

∫ h/2

z=−h/2

σ1(z) ds2z dz = t̃s + t̃d + c1m1 (3.31)
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There act, of course, also stresses in the z-direction within the thick layer:
Normal stresses σ3(z) and transverse shear stresses τ13(z), τ23(z) — and, of
course, we also have the associate stresses τ31(z) = τ13(z) and τ32(z) = τ23(z).
They are caused by the pressures on the upper and lower boundary and
by the transverse forces — cf. chapter 2. However, we do not attribute any
deformation to them, neither a strain normal to the layer, since we assume
the thickness of all sublayers to be constant, nor a shear strain, since tilt is
excluded. So these stresses do no work — they are pure reactions — and
hence need not be considered in the actual context.

3.4 Relaxation

The mass µ̃ dA which is absorbed from the environment per unit time carries
with itself the energy

fµ̃ dA (3.32)

Usually mechanisms of dissipation are present in any system. Therefore we
postulate that the sum of the external power and the energy supply of the
absorbed mass together must be greater than or at least equal to the rate of
the elastic strain energy.

P dA+ fµ̃ dA ≥ (
w dA

)• (3.33)

Introduction of (3.22), (3.24), (3.27) yields

−
(
m1 +

∂w

∂c1

)
ċ1 −

(
m2 +

∂w

∂c2

)
ċ2

+
(
t̃s − ∂w

∂εes
− w

)
ε̇es +

(
t̃d − ∂w

∂εed

)
ε̇ed

+
(
t̃s + fµ− w

)
δs + t̃d δd ≥ 0 (3.34)

Since this inequality must be satisfied for arbitrary values of ċ1, ċ2, ε̇es, ε̇ed,
the underlined terms must vanish, and we infer the potential relations

m1 = − ∂w
∂c1

, m2 = − ∂w
∂c2

(3.35)

t̃s = w +
∂w

∂εes
, t̃d =

∂w

∂εed
(3.36)

and the remaining inequality
(
t̃s + fµ− w

)
δs + t̃d δd ≥ 0 (3.37)
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The simplest ansatz which guarantees the fulfilment of this inequality is one
within the framework of linear viscosity. So we set

δs =
2
η1

(t̃s + fµ− w) , δd =
2
η2
t̃d (3.38)

with two positive viscosities η1 and η2. (We shall not investigate the question
whether this approach is realistic, because a discussion of the kinetics of
monomolecular films is beyond the scope of this monograph.)

What we are interested in is the relaxed state, which will asymptotically
be reached. It is characterized by δs = 0, δd = 0 and hence by

t̃s = w − fµ , t̃d = 0 (3.39)

Now, according to (3.19), we have

µ = µb exp(−εes) =⇒ dµ

dεes
= −µ (3.40)

and hence
∂w

∂εes
=
∂w

∂µ

dµ

dεes
= −µ∂w

∂µ
(3.41)

and, with (3.36), (3.39),

t̃s = w +
∂w

∂εes
= w − µ

∂w

∂µ
= w − fµ (3.42)

A comparison shows that
∂w

∂µ
= f (3.43)

is valid in the relaxed state. The prescription for the calculation of the bending
moments

m1 = − ∂w
∂c1

, m2 = − ∂w
∂c2

(3.44)

was already given by (3.35), while (3.31) with (3.39) yields the membrane
normal forces of the relaxed state

t1 = w − fµ+ c1m1 , t2 = w − fµ+ c2m2 (3.45)

These results were already derived in chapter 2 from the mesoscopic theory
— cf. equations (2.41), (2.46), (2.47).

A more detailed discussion of the relation between the microscopical
point of view and the mesoscopical approach can be found in appendix I.6.
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4 A Constitutive Assumption

4.1 The Energy Density of the Film

In this chapter, we want to illustrate the transition from the microscopic
to the mesoscopic scale by means of an example. We incorporate a state of
prestress on the microscopic level and will see in chapter 6 that this allows
a symmetry breaking of the mesoscopic energy density function of the fluid
film. Our example is based on two special constitutive assumptions.

• First constitutive assumption: The energy density (per unit mass) of
each layer has the following dependence on the elastic strains.

Wz = Wz0 +Wz1

(
I2
1 + κI2

)
= Wz0 +Wz1

(
(1 + κ)(ε21 + ε22) + 2(1− κ)ε1ε2

)

(4.1)
Here, Wz0, Wz1, and κ are material constants of the layer under discussion.
The chosen functional form is the most general polynomial of second order,
which satisfies the condition that the state with ε1 = ε2 = 0 be free of stress.
Therefore, linear terms must be absent, as can be inferred from (I.64). In the
case of small elastic strains, our ansatz may be regarded as a truncated Taylor
expansion. In the limit of very large magnitudes of the strains (|ε1| → ∞ or
|ε2| → ∞), the energy density tends to infinity. Moreover, the use of the strain
invariants I1 and I2 allows the separation of the influences of an elastic volume
change and a volume-preserving elastic shear, respectively. The choice κ = 0
would eliminate the shear stiffness and thus characterize each sublayer as a
lateral fluid.

We introduce the mass density (per unit volume) %b of the layer at z in
the basic placement which results from (3.16)

%b dAb = % dAz = % (1− c1 z)(1− c2 z) dA = %b exp
(− εes

)
dA (4.2)

The energy density (per actual unit volume) of the layer at z is then
wz = %Wz, and integration over all the layers yields, with (3.23),

w dA =
∫ h/2

z=−h/2

%Wz dAz dz =
∫ h/2

z=−h/2

%bWz dz exp
(− εes

)
dA (4.3)
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whence we infer

w =
∫ h/2

z=−h/2

%b(z)
(
Wz0(z) +Wz1(z)

(
I1(z)2 + κ(z)I2(z)

))
dz exp

(− εes
)

(4.4)
• Second constitutive assumption: The following simple interrelations
exist between the material properties of the single layers.

%b(z)Wz0(z) =
w0

h
= const ,

%b(z)Wz1(z) =
w1

h
= const ,

κ(z) = κ = const , (4.5)

(More realistic relations could surely be obtained, if information on the molec-
ular substructure were available.) This yields the energy density (referred to
the actual unit area of the middle surface)

w =

(
w0 + w1

1
h

∫ h/2

z=−h/2

(
I1(z)2 + κI2(z)

)
dz

)
exp

(− εes
)

(4.6)

The invariants (3.11), (3.12) may be written

I1(z) = εes + gs(z) , I2(z) =
(
εed + gd(z)

)2
, (4.7)

with

gs(z) = 2εp(z)+ln(1−c1 z)+ln(1−c2 z) , gd(z) = ln(1−c1 z)−ln(1−c2 z)
(4.8)

and we obtain

w =
(
w0 + w1

1
h

∫ h/2

z=−h/2

(
ε2es + 2gs(z) εes + gs(z)2

+κ
(
ε2ed + 2gd(z) εed + gd(z)2

))
dz

)
exp(−εes)

=
(
w0 + w1

(
ε2es + 2Gs εes +Gss + κ

(
ε2ed + 2Gd εed +Gdd

)))
exp(−εes)

=
(
w0 + w1

((
εes +Gs

)2 + κ
(
εed +Gd

)2 +G
))

exp(−εes)
(4.9)

with the abbreviations
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Gs =
1
h

∫ h/2

z=−h/2

gs(z) dz , Gss =
1
h

∫ h/2

z=−h/2

gs(z)2 dz ,

Gd =
1
h

∫ h/2

z=−h/2

gd(z) dz , Gdd =
1
h

∫ h/2

z=−h/2

gd(z)2 dz . (4.10)

and

G = Gss −G2
s + κ

(
Gdd −G2

d

)
(4.11)

Since

G =
1
h

∫ h/2

z=−h/2

((
gs(z)−Gs

)2

+ κ
(
gd(z)−Gd

)2
)
dz (4.12)

the expression G, obviously, cannot be negative (if κ ≥ 0 is presupposed).
The second equations of (3.36), (3.39) become

0 = t̃d =
∂w

∂εed
= 2κw1

(
εed +Gd

)
exp(−εes) (4.13)

and so we must have

εed = −Gd (4.14)

in the relaxed state. Moreover, we introduce the mass density (per actual
unit area of the film) according to (3.40)

µ = µb exp(−εes) (4.15)

and make use of (3.41). Then the condition (3.43) of the relaxed state takes
the form

f =
∂w

∂µ
= − 1

µ

∂w

∂εes
= − 1

µb
exp(εes)

∂w

∂εes

=
w0

µb
+
w1

µb

((
εes +Gs

)2 − 2
(
εes +Gs

)
+ κ

(
εed +Gd

)2 +G
)

(4.16)

and introduction of (4.14) yields the quadratic equation

f =
w0

µb
+
w1

µb

((
Gs − 1 + εes

)2

+G− 1
)

(4.17)

with the solution

εes = − ln
µ

µb
= 1−Gs −

√
1−G+

fµb

w1
− w0

w1
(4.18)
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The sign of the square root is chosen so that εes = 0 results in the case
gs(z) ≡ 0, gd(z) ≡ 0 and fµb − w0 = 0.

The energy density (4.9) of the relaxed state becomes

w(c1, c2, µ) =
µ

µb

(
w0 + w1

((
Gs(c1, c2)− ln

µ

µb

)2

+G(c1, c2)
))

(4.19)

and the mass density may be obtained from (4.18) in the form

µ = µb exp

(
Gs(c1, c2)− 1 +

√
1−G(c1, c2) +

fµb

w1
− w0

w1

)
(4.20)

Thus the local value of µ is expressed by the local curvatures c1, c2 and the
parameter f . The value of f , however, is the same at all points of the film
and hence also at some distinguished point P.

f =
w0

µb
+
w1

µb

((
Gs(c1P, c2P)− 1− ln

µP

µb

)2

+G(c1P, c2P)− 1
)

(4.21)

If we introduce (4.21) into (4.20) then we find µ at any point expressed by the
local curvatures c1, c2 and the mass density µP at the distinguished point P.

ln
µ

µb
= Gs(c1, c2)−1+

√
G(c1P, c2P)−G(c1, c2)+

(
1−Gs(c1P, c2P) + ln

µP

µb

)2

(4.22)

4.2 Evaluation

The elastic prestrain is chosen in the form

εp(z) = H0z +Qz2 , (4.23)

which satisfies the condition εp(0) = 0 of chapter 3. The coefficient H0 de-
scribes a skew prestrain, which causes a preferred isotropic curvature of the
film, while Q takes into account a symmetric prestrain of the outer layers of
the film. We will need

w − µ
∂w

∂µ
=

µ

µb
2w1

(
Gs − ln

µ

µb

)
(4.24)

and

−mj =
∂w

∂cj
=

µ

µb
w1

(
2
(
Gs − ln

µ

µb

)∂Gs

∂cj
+
∂G

∂cj

)

=
µ

µb
w1

(
−2 ln

µ

µb

∂Gs

∂cj
+
∂Gss

∂cj
+ κ

(∂Gdd

∂cj
− 2Gd

∂Gd

∂cj

))

(4.25)
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If the following dimensionless variables are introduced

z̃ =
2z
h
, λ =

2L
h
, h̄0 =

h

2
H0 , q =

h2

4
Q , c̃1 = c1 L , c̃2 = c2 L

(4.26)
then the integrals become

Gs =
1
2

∫ 1

z̃=−1

(
2h̄0z̃ + 2qz̃2 + ln

(
1− c̃1z̃

λ

)
+ ln

(
1− c̃2z̃

λ

))
dz̃ (4.27)

Gss =
1
2

∫ 1

z̃=−1

(
2h̄0z̃ + 2qz̃2 + ln

(
1− c̃1z̃

λ

)
+ ln

(
1− c̃2z̃

λ

))2

dz̃ (4.28)

Gd =
1
2

∫ 1

z̃=−1

(
ln

(
1− c̃1z̃

λ

)
− ln

(
1− c̃2z̃

λ

))
dz̃ (4.29)

Gdd =
1
2

∫ 1

z̃=−1

(
ln

(
1− c̃1z̃

λ

)
− ln

(
1− c̃2z̃

λ

))2

dz̃ (4.30)

∂Gs

∂cj
= − L

2λ

∫ 1

z̃=−1

z̃

(
1− c̃j z̃

λ

)−1

dz̃ (4.31)

∂Gss

∂cj
= − L

λ

∫ 1

z̃=−1

(
2h̄0z̃ + 2qz̃2 + ln

(
1− c̃1z̃

λ

)
+ ln

(
1− c̃2z̃

λ

))
×

z̃

(
1− c̃j z̃

λ

)−1

dz̃ (4.32)

∂Gd

∂cj
= (−1)j L

2λ

∫ 1

z̃=−1

z̃

(
1− c̃j z̃

λ

)−1

dz̃ (4.33)

∂Gdd

∂cj
= (−1)j L

λ

∫ 1

z̃=−1

(
ln

(
1− c̃1z̃

λ

)
− ln

(
1− c̃2z̃

λ

))
z̃

(
1− c̃j z̃

λ

)−1

dz̃

(4.34)

Although an analytic evaluation of these integrals is possible, it yields
involved expressions containing logarithms and dilogarithms. Therefore a
numeric integration with, say, ten Gauss points over the thickness is more
efficient.

However, a Taylor expansion of the integrals with respect to the curva-
tures can easily be obtained and gives good qualitative information. If we
make use of the quantities H, D and K as derived from the curvature tensor
in appendix C, introduce the dimensionless quantities

h̄ =
h

2
H =

h

2
c1 + c2

2
, d̄ =

h

2
D =

h

2
c1 − c2

2
(4.35)
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and note

h̄ 2 − d̄ 2 =
h2

4
(H2 −D2) =

h2

4
c1c2 =

h2

4
K (4.36)

then the expansion of G up to fourth order terms in the curvatures may be
written

G ≈ 16
45
q2 +

4
3
h̄2

0 −
8
3
h̄0h̄+

4
3

(
1− 4

15
q

)
h̄ 2 +

4
3

(
κ− 4

15
q

)
d̄ 2

− 8
15
h̄0h̄

3 − 8
5
h̄0h̄d̄

2 +
4
15

(
7
3
− 4

7
q

)
h̄ 4

+
(

16
9

+
88
45
κ− 32

35
q

)
h̄ 2d̄ 2 +

4
15

(
1
3

+ 2κ− 4
7
q

)
d̄ 4 (4.37)

We will learn in the next section that G describes the energy density — to
a first approximation. In the paper [7], we proposed an energy density with
the additive structure w1(h̄) + w2(d̄ ). Now, the seventh and the ninth term
in (4.37) show that our function G does not possess such a simple form. Its
properties will be discussed in detail in section 6.9, where we will also need
the following Taylor approximations.

Gs ≈ 2
3
q − 1

3
(
h̄ 2 + d̄ 2

)− 1
10

(
h̄ 4 + 6 h̄ 2d̄ 2 + d̄ 4

)
(4.38)

(
1+

h2

12
K

)
exp(−Gs) ≈ exp

(
−2

3
q

)(
1 +

2
3
h̄ 2 +

4
15
h̄ 4 +

32
45
h̄ 2d̄ 2 +

2
45
d̄ 4

)

(4.39)

4.3 Helfrich’s Bending Energy Density

(4.19) with (4.18) yields

w

µ
=

w0

µb
+
w1

µb

((
1−

√
1−G+

fµb

w1
− w0

w1

)2

+G

)

=
w0

µb
+
w1

µb

(
2
(

1−
√

1−G+
fµb

w1
− w0

w1

)
+
fµb

w1
− w0

w1

)
(4.40)

If we replace the square root by the first three terms of its Taylor series, then
we obtain the approximation

w

µ
≈ w0

µb
+
w1

µb
G+

w1

4µb

(
G− fµb

w1
+
w0

w1

)2

(4.41)

The underlined leading terms of this representation of the energy per unit
mass of the amphiphilic film are seen to depend only on the expression G
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and hence on the local curvatures, while the remaining term depends also
on the properties of the whole system through the parameter f . If we only
retain the underlined terms and introduce the Taylor representation (4.37)
up to second order terms in the curvatures, we arrive at

3
4
w

w1

µb

µ
=

3
4
w0

w1
+

4
15
q2 + h̄2

0 − 2h̄0h̄+
(
1− 4

15
q
)
h̄2 +

(
κ− 4

15
q
)
d̄2 (4.42)

The bending of amphiphilic films is often discussed on the basis of the fol-
lowing quadratic form of the bending energy per unit area

w =
1
2
kc

(
2H − c0

)2 + k̄cK (4.43)

taken from a famous paper of Helfrich [3], where kc, k̄c, and c0 are material
constants at a given temperature. With (4.35), (4.36) and with

c̄0 =
h

2
c0 (4.44)

it can be rewritten as

h2

8kc
w =

1
4
c̄ 2
0 − c̄0h̄+

(
1 +

k̄c

2kc

)
h̄ 2 − k̄c

2kc
d̄ 2 (4.45)

If we define

c̄0 =
2h̄0

C
,

k̄c

2kc
=

1
C

(
4
15
q − κ

)
(4.46)

with the abbreviation

C = 1 + κ− 8
15
q (4.47)

we obtain

C h2

8kc
w =

1
C
h̄2

0 − 2h̄0h̄+
(
1− 4

15
q
)
h̄2 +

(
κ− 4

15
q
)
d̄2 (4.48)

Then (4.42) and (4.48) become identical if we further choose

w1 =
1

1 + κ− 8
15q

µb

µ

6
h2

kc (4.49)

w0

w1
= −16

45
q2 +

4
3

8
15q − κ

1 + κ− 8
15q

h̄2
0 (4.50)
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We observe several important differences between the two approaches:

• Our energy density (4.19) depends not only on the local curvatures but
also on the local mass density, i.e. on the elastic stretch of area, and
that mass density, according to (4.20), is a function of the curvatures
and of the properties of the whole system, which enter through the
parameter f .

• If we only retain the underlined terms in (4.41), then the energy den-
sity per unit mass, but not the energy density per unit area, is only
dependent on the curvatures. On the other hand, the quadratic form
(4.43) assumes the energy per unit area to depend on the curvatures
alone. However, if the stretch of the area is small, i.e. the ratio µ/µb

near to 1, then the distinction between the two kinds of energy density
may be disregarded. Otherwise, formula (4.49) is inconsistent since w1

and kc cannot both be material constants.

• According to (4.46), there is no equality between the characteristic
curvatures c̄0/2 and h̄0 of the two approaches.

• Our energy density is not a quadratic expression of the curvatures. The
correspondence between the two approaches was discussed on the basis
of a truncated Taylor series of our expression. We will see, however, in
section 6.9, that higher order terms are essential for the explanation of
symmetry breaking and hence for the existence of an X point in the
phase diagram.

• Since (4.45) implies w = 0, if h̄ = d̄ = c̄0/2, our material constant w0

cannot be arbitrary but must have the special value given by (4.50).
Moreover, since h̄0 is known to show a strong dependence on the tem-
perature, the same must be true with w0. These properties are not
required in our setting.
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5 Evaluation for Special Surfaces

5.1 The Basic Variables

We consider the case that all of the amphiphilic film forms only one kind
of structure with uniform characteristic length L. The index k, discerning
different structures in the formulae of chapter 2, is then unnecessary and will
be omitted. To be more precise, we will discuss lamellae, spheres, cylinders,
and a class of bi-continuous surfaces depending on a shape parameter ζ as
constructed in appendix H.2.

Surfaces with constant principal curvatures c1, c2, i.e. lamellae, spheres
and cylinders, will have a constant mass density µ, and so the parameter

f =
∂w

∂µ

(
c1, c2, µ

)
(5.1)

according to (2.41) is trivially constant over the surface.
In contrast to this, the principal curvatures as well as the mass density of

all other surfaces will constitute fields on the surface. These fields, however,
are interrelated in such a way, that the parameter f according to (5.1) must
have the same value at each point. Let us single out one such point P. If we
compare it with an arbitrary point, we must have

f =
∂w

∂µ

(
c1, c2, µ

)
=
∂w

∂µ

(
c1P, c2P, µP

)
(5.2)

We assume that this relation can be solved for µ to give

µ = µ(c1, c2, µP) (5.3)

After all, a surface of any type is fully characterized by two basic variables,
the length L and the mass density µP. (The index P may be omitted in the
case of surfaces with constant principal curvatures.) Once L and µP are given,
then the fields c1, c2, µ and, according to (2.41), (2.46), (2.47), also f and
the internal forces t1, t2, m1, m2 are known.
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5.2 Areas and Volumes

5.2.1 Spheres

If the amphiphilic film of thickness h forms spheres with uniform radius L,
which enclose oil, then the area of the middle surface of one sphere is

AC = 4πL2 (5.4)

and the volume of the oil-sided cavity is

VOC =
4
3
π

(
L− h

2

)3

(5.5)

If the spheres are not in contact, then no water volume will be attributed
to them, i.e. VWC = 0, and all of the water is interpreted as an excess. On
the other hand, if the spheres are arranged in their closest position then we
consider all of the water as being attached to them, and the water-sided
volume per sphere is given by

VWC = χS
4
3
π

(
L+

h

2

)3

(5.6)

with Kepler’s coefficient

χS =
3
√

2
π

− 1 = 0.350 (5.7)

5.2.2 Cylinders

Now we consider the case that the amphiphilic film forms cylinders, which
enclose oil. Let the ratio of the length l and the radius L of the cylinder be
denoted by α, so that l = αL. The area of the middle surface of one cylinder
is

AC = 2πL l = 2παL2 (5.8)

and the volume of the oil-sided cavity is

VOC = π

(
L− h

2

)2

l = πα

(
L− h

2

)2

L (5.9)

If the cylinders are not in contact, then no water volume will be attributed
to them, i.e. VWC = 0, and all of the water is interpreted as an excess. On
the other hand, if the cylinders are arranged in their closest position then
we consider all of the water as being attached to them, and the water-sided
volume per cylinder is given by

VWC = χC π

(
L+

h

2

)2

l = χC πα

(
L+

h

2

)2

L (5.10)
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with

χC =
2
√

3
π

− 1 = 0.103 (5.11)

5.2.3 Bi-continuous Structures

In appendix H.2, a class of triply periodic surfaces is constructed. Each surface
is characterized by its shape parameter ζ and its characteristic length L. Let
us consider the Gaussian curvature as an example of a typical field on the
surface. Then its value at a point on the special surface with L = 1 and ζ = 0
is denoted by K̄ and the value at the corresponding point on the surface with
L = 1 and arbitrary ζ by K̂, while K denotes the value on a surface with
any L. With (H.46), we find the interrelations

H =
Ĥ

L
= − 1

L

ζK̄

1 + ζ2K̄
, K =

K̂

L2
=

1
L2

K̄

1 + ζ2K̄
(5.12)

and hence

H = − ζ LK (5.13)

The corresponding principal curvatures are

c1,2 =

√
− K̄

L
(
− ζ

√
− K̄ ± 1

) (5.14)

as is easily checked, since the conditions c1 +c2 = 2H, c1c2 = K are satisfied.
According to (H.55), the area of one patch is

A = Â L2 =
(
Ā− π

6
ζ2

)
L2 (5.15)

and hence the area of the middle surface of one cell is

AC = 6A =
(
6Ā− π ζ2

)
L2 (5.16)

With (H.53), (H.54), the integral of the Gaussian curvature over one patch
becomes∫

A

K dA =
∫

Â

K dÂL2 =
∫

Ā

K
(
1 + ζ2 K̄

)
dĀL2 =

∫

Ā

K̄ dĀ = −π
6

(5.17)

and the integral over the mean curvature
∫

A

H dA = − ζ L
∫

A

K dA =
π

6
ζ L (5.18)

The volume of one cell is VC = 8L3, and hence (H.56) gives the oil-sided
volume of the cell as

VO =
(

1
2
− 3

4
Ā ζ +

π

24
ζ3

)
8L3 (5.19)
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With (D.10) and (H.47), we obtain the volume of the oil-sided cavity by

VOC = VO − 6V+ (5.20)

with

V+ =
∫

A

(
h

2
−H

h2

4
+K

h3

24

)
dA

=
h

2

(
Ā− π

6
ζ2

)
L2 − h2

4
π

6
ζ L− h3

24
π

6

=
(
Ā

h

2L
− π

18

((
ζ +

h

2L

)3

− ζ3

))
L3 (5.21)

and hence

VOC = 4L3 − 6Ā L2
(
ζ L+

h

2

)
+
π

3

(
ζ L+

h

2

)3

(5.22)

and

VWC = 4L3 + 6Ā L2
(
ζ L− h

2

)
− π

3

(
ζ L− h

2

)3

(5.23)

5.3 Oil and Water Pressures

5.3.1 Spheres

We note c1 = c2 = 1/L and hence t1 = t2 = t, m1 = m2 = m. We consider
the case that the spheres are in their closest position and introduce (5.4),
(5.5), (5.6) into (2.53) and (2.54). These equations may be solved for pW and
pO to give

pO =
1

h
(
L− h

2

)2

(
−L (L− h) (w − fµ) +

(
L+

h

2

)
2m

)

pW =
1

χS h
(
L+ h

2

)2

(
L (L+ h) (w − fµ)−

(
L− h

2

)
2m

)

+
(

1 +
1
χS

)
pe (5.24)

Thus the oil and water pressures are represented as functions of L and µ.

5.3.2 Cylinders

We note c1 = 1/L, c2 = 0 and hence c2m2 = 0. We consider the case that the
cylinders are in their closest position and introduce (5.8), (5.9), (5.10) into
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(2.53) and (2.54). These equations may be solved for pW and pO to give

pO =
1

hL
(
L− h

2

)
(
−L

(
L− h

2

)
(w − fµ) +

(
L+

h

2

)
m1

)

pW =
1

χC hL
(
L+ h

2

)
(
L

(
L+

h

2

)
(w − fµ)−

(
L− h

2

)
m1

)

+
(

1 +
1
χC

)
pe (5.25)

5.3.3 Bi-continuous Structures

We introduce (5.16), (5.22), (5.23) into (2.53) and (2.54) and arrive at

pO =
N1(ζ)
D(ζ)

(∫

AC

(
w − fµ

)
dA+ 8 peL

3

)

+
N2(ζ)
D(ζ)

(∫

AC

(
c1m1 + c2m2

)
dA+ 8 peL

3

)
(5.26)

pW =
N1(−ζ)
D(−ζ)

(∫

AC

(
w − fµ

)
dA+ 8 peL

3

)

+
N2(−ζ)
D(−ζ)

(∫

AC

(
c1m1 + c2m2

)
dA+ 8 peL

3

)
(5.27)

with the abbreviations

N1(ζ) =
π

3

(
ζ L+ h

)(
ζ L− h

2

)2

− (4 + 6Ā ζ)L3 , N2(ζ) = VWC (5.28)

D(ζ) = ζ Lh

(
π2

3

(
ζ L+

h

2

)2(
ζ L− h

2

)2

− 4π
(
L3h+ 2Ā ζ2L4

)
+ 36Ā2 L4

)

(5.29)
The pressures pO and pW are dependent on the basic variables L and µP.

The solution is not applicable in the isometric case ζ = 0, since the de-
nominator D vanishes. Finite values of pO and pW require that the numerator
is also equal to zero, i.e.

0 = N1(0)
(∫

AC

(
w − fµ

)
dA+ 8 peL

3

)

+N2(0)
(∫

AC

(
c1m1 + c2m2

)
dA+ 8 peL

3

)
(5.30)
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with

N1(0) =
π

12
h3 − 4L3 , N2(0) = 4L3 − 3ĀL2h+

π

24
h3 (5.31)

This implies that the equations (2.53) and (2.54) are linearly dependent.
Hence the sum of the pressures can be derived from equation (2.54) alone,
which takes the form — note (5.16), (5.17), (5.23) —

∫

AC

(
w − fµ

)
dA+ pe

(
h

∫

AC

dA+
h3

12

∫

AC

K dA+ 2VWC

)
=

(
pO + pW

)
VWC

=
∫

AC

(
w − fµ

)
dA+ 8peL

3 =
(
pO + pW

)
N2(0) (5.32)

We obtain

pO + pW =
1

N2(0)

(∫

AC

(
w − fµ

)
dA+ 8peL

3

)
(5.33)

Thus the sum of pO and pW is determined by the basic variables L and µP,
but not their difference. We have, however, the additional equation (5.30),
which constitutes a relation between L and µP.

5.4 Four Possible Cases

5.4.1 Case 1: Neither Oil nor Water Excess

The condition (2.32) must be valid for the enclosed oil and water. So

f =
∂fO
∂kO

(kO, pO) +
pO

%A(pO)
=
∂fW
∂kW

(kW, pW) +
pW

%A(pW)
(5.34)

Now, f , pO, and pW have already been expressed as functions of the basic
variables L and µP. Therefore the last equations allow us to express kO and
kW as functions of L and µP, too.
(The case ζ = 0 has to be treated in a somewhat different manner, but this
shall not be detailed here but in chapter 6.)

The two constraints hO = 0 and hW = 0 according to (2.25) and (2.26)
may be rewritten — note (2.12) —

υOmO ≡
(

1
%O(pO(L, µP))

+
kO(L, µP)

%A(pO(L, µP))

)
mO = nVOC(L) (5.35)

and

υWmW ≡
(

1
%W(pW(L, µP))

+
kW(L, µP)

%A(pW(L, µP))

)
mW = nVWC(L) (5.36)

where VOC, VWC have to be taken from section 5.2.
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The number n of cells can be inferred from equation (2.5), which spe-
cializes to

mA − n

∫

AC

µdA− kOmO − kWmW = 0 (5.37)

and yields

n(L, µP) =
1∫

AC
µdA

(
L, µP

)
(
mA− kO(L, µP)mO− kW(L, µP)mW

)
(5.38)

So n is also represented as a function of L and µP.
Inserting this expression into (5.35) and (5.36) we may compute the

unknowns L and µP from these two nonlinear equations and, afterwards, get
the number n from (5.38).

5.4.2 Case 2: Oil Excess but no Water Excess

Not only an oil excess but also a plane layer of separation between the excess
and the microemulsion exists. Therefore (2.35) and (2.37) must hold

f =
∂fOE(kOE, pe)

∂kOE
+

pe

%A(pe)
=
dwO(µO)
dµO

(5.39)

They allow us to express kOE and µO as functions of L and µP. Moreover,
(2.36) must be valid

fOE

(
kOE(L, µP), pe

)− kOE(L, µP)
∂fOE

∂kOE

(
kOE(L, µP), pe

)
+

pe

%O(pe)

= fO
(
kO(L, µP), pO(L, µP)

)− kO(L, µP)
∂fO
∂kO

(
kO(L, µP), pO(L, µP)

)

+
pO(L, µP)

%O

(
pO(L, µP)

) (5.40)

This equation represents a relation between the basic variables L and µP.
Equation (2.5) reads

mA − n
( ∫

AC

µdA+ (kO − kOE)υ−1
O VOC

)
− kOEmO − kWmW − µOAO = 0

(5.41)
and yields

n =
mA − kOEmO − kWmW − µOAO∫

AC
µdA+ (kO − kOE)υ−1

O VOC

(5.42)

Thus n is represented as a function of L and µP. Introducing this into (5.36)
we obtain a relation between these two basic variables. This relation and the
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relation (5.40) form a set of two nonlinear equations for the computation of
the unknowns L and µP. Afterwards, the number n is obtained from (5.42).

Our solution is only valid, if an oil excess actually exists, i.e. if n is so
small that we have

mO > nυ−1
O VOC (5.43)

5.4.3 Case 3: Water Excess but no Oil Excess

In general this case is obtained from case 2 by simply interchanging the
indices O and W.

The situation is different if we are concerned with spheres or cylinders
which enclose oil. If there is much water then the single surfaces are not
in their closest position and do not touch each other. The microemulsion
appears diluted, all of the water is regarded as an excess, but a separating
surface between the excess and the microemulsion does not exist.

Equation (5.34) is replaced by

f =
∂fO
∂kO

(kO, pO) +
pO

%A(pO)
=
∂fWE(kWE, pe)

∂kWE
+

pe

%A(pe)
(5.44)

and these equations allow us to express kO and kWE as functions of L and µ.
The water pressure equals the environmental pressure pW = pe, so

that the last terms in the equations (2.53) and (2.54) vanish. (Moreover,
VWC = 0.) Thus pO is the only remaining unknown in these two equations
which therefore must be linearly dependent. If we put pW = pe on the left-
hand side of the solutions (5.24) and (5.25), respectively, we indeed obtain
an interrelation between L and µ, namely

L(L+ h)
(
w − fµ

)−
(
L− h

2

)
2m+ h

(
L+

h

2

)2

pe = 0 (5.45)

in the case of spheres and

L

(
L+

h

2

) (
w − fµ+ peh

)−
(
L− h

2

)
m1 = 0 (5.46)

in the case of cylinders.
Since the membrane force of the sphere may be written

t = w − fµ+
m

L
(5.47)

according to (2.46), the condition (5.45) may be given the form

3m = (L+ h) t+ pe
h

L

(
L+

h

2

)2

(5.48)

of a relation between the membrane force t and the bending moment m.
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The membrane forces of the cylinder are

t1 = w − fµ+
m1

L
, t2 = w − fµ (5.49)

and the condition (5.46) can be given the form

2m1 =
(
L+

h

2

) (
t1 + pe h

)
(5.50)

of a relation between the membrane force t1 and the bending moment m1.
Equation (2.5) specializes to

mA − nµAC − kOmO − kWEmW = 0 (5.51)

whence follows the number n

n(L, µ) =
1

µAC(L)

(
mA − kO(L, µ)mO − kWE(L, µ)mW

)
(5.52)

Introducing this into (5.35) gives one equation, while (5.45) or (5.46) is the
second one from which L and µ have to be computed. The number n is then
obtained from (5.52).

Our solution is only valid if the surfaces are not in their closest position.
The amount of water must therefore satisfy

mW > nυ−1
W VWC ≡ n

(
1

%W(pe)
+
kWE(L, µ)
%A(pe)

)−1

VWC (5.53)

where the minimum water volume of one cell VWC is taken from (5.6) or
(5.10), respectively.

5.4.4 Case 4: Water Excess and Oil Excess

We need two equations for the determination of the basic variables L and
µP. One of them is equation (5.40). The second one is generally obtained by
replacing the index O by W in (5.40), and the number n of cells results from

n =
mA − kOEmO − kWEmW − µOAO − µWAW∫

AC
µdA+ (kO − kOE)υ−1

O VOC + (kW − kWE)υ−1
W VWC

(5.54)

However, if we are considering spheres or cylinders which contain oil, then
the second equation is instead given by (5.45) or (5.46), respectively, and the
number n is given by

n =
mA − kOEmO − kWEmW − µOAO∫

AC
µdA+ (kO − kOE)υ−1

O VOC

(5.55)

The number n must be so small that we have

mO > nυ−1
O VOC , mW > nυ−1

W VWC (5.56)
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where VWC denotes the minimum water volume of one cell in the case of
spheres and cylinders which contain oil.

On the other hand, n must not be negative, i.e. the numerator of (5.54)
or (5.55) must be positive. Otherwise no film exists but only a separating
surface between oil and water, and the rest of the amphiphile is solved as
monomers. Then we have

mA = kOEmO + kWEmW + µOWAOW (5.57)

where AOW and µOW denote the area and the mass density of the separating
surface. Moreover, we must have

f =
∂fOE(kOE, pe)

∂kOE
+

pe

%A(pe)
=
∂fWE(kWE, pe)

∂kWE
+

pe

%A(pe)
=
dwOW(µOW)

dµOW

(5.58)
The equations (5.57), (5.58) allow us to compute kOE, kWE and µOW.

5.5 Local Equilibrium

The local equilibrium conditions (2.42), (2.43) will, in general, not be satisfied
by our structures. That means: Neither the spheres nor the cylinders nor the
bi-continuous structures are exact solutions of the Euler-Lagrange equations
of our minimum problem. On the contrary, they are test functions in the sense
of Rayleigh-Ritz and satisfy only one global equilibrium condition (2.53). So
there will be neighbouring shapes which yield smaller values of the free energy.

There are, however, two exceptions. They concern spheres and cylinders
which are not in contact with each other. They are uniformly loaded by the
oil and the water pressure.

The condition of global equilibrium (2.53) yields in the case of spheres,
with (5.4), (5.5),

t = (pO − pe)
1

2L

(
L− h

2

)2

− peh (5.59)

which can be rearranged to read

0 = t 2πL+ pe π

(
L+

h

2

)2

− pO π

(
L− h

2

)2

(5.60)

and may be interpreted as the equilibrium condition of a hemisphere. The
first term is the resultant of the membrane forces over the perimeter of the
cut, the second one is the resultant of the water pressure over the circular
area with radius L+ h/2 and the third the resultant of the oil pressure over
the circular area with radius L − h/2 and, of course, acting in the opposite
direction.
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We arrive at the same result if we refer to the local equilibrium condi-
tions. With (C.23) and C = L−1 1T , we have

1T · Ḿ · ∇T = 1T ·m1́T · ∇T = 1T · 2m
L

n = 0 (5.61)

and the equilibrium condition of moments (2.42) is hence satisfied with arbi-
trarym but vanishing transverse force, i.e. qT = 0. The equilibrium condition
of forces (2.43) reads

−T : C = pe

(
1 + trC

h

2
+ detC

h2

4

)
− pO

(
1− trC

h

2
+ detC

h2

4

)

= −2 t
L

= pe

(
1 +

h

L
+

h2

4L2

)
− pO

(
1− h

L
+

h2

4L2

)
(5.62)

and the last equation is, indeed, equivalent to (5.60).
In the case of cylinders, the condition of global equilibrium (2.53) yields

with (5.8), (5.9), (5.49), (5.50)

t1 = pO

(
L− h

2

)
− pe

(
L+

h

2

)
(5.63)

This may be interpreted as the equilibrium condition of a hemicylinder. The
left-hand side gives the membrane force per unit length, the right-hand side
is the resultant of the oil pressure over the area of unit width and height
L−h/2 minus the resultant of the water pressure over the area of unit width
and height L+ h/2.

We arrive at the same result if we refer to the local equilibrium con-
ditions. The tensor of moments reads M = m1 e1 ⊗ e1 + m2 e2 ⊗ e2. We
have

1T · Ḿ · ∇T = 1T ·m1é1

(
e1 · ∇T

)
= 1T · m1

L
n = 0 (5.64)

and the equilibrium condition of moments (2.42) is hence satisfied with arbi-
trary constant values m1 and m2 but vanishing transverse force, i.e. qT = 0.

The tensor of membrane forces reads T = t1 e1⊗ e1 + t2 e2⊗ e2 and the
equilibrium condition of forces (2.43) becomes

−T : C = pe

(
1 + trC

h

2
+ detC

h2

4

)
− pO

(
1− trC

h

2
+ detC

h2

4

)

= − t1
L

= pe

(
1 +

h

2L

)
− pO

(
1− h

2L

)
(5.65)

The last equation is, indeed, equivalent to (5.63).
Note: If the spheres or cylinders are in contact, then pW 6= pe and the

local equilibrium conditions are not satisfied, since the interaction at the
contact points is not modelled in detail.
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6 A Simplified Approach

6.1 The Assumptions

Our results become more transparent if we adopt two simplifications.

• The areas AO, AW of the separating surfaces are small and so these
surfaces are neglected.

• The fluid within a cavity and the excess fluid have the same energy
density function. This seems reasonable if the cavities are large, i.e. if
L/h À 1. If they are small, then the solubility of monomers may be
reduced, but we ignore such an effect.

The solution parameters and pressures of a fluid, say oil, within a cavity
and within the excess are interrelated by equation (2.36). Now, if the energy
density functions are equal (fO ≡ fOk = fOE) then kO ≡ kOk = kOE and
pOk = pe describe an obvious solution of this equation. The condition (2.32)
is no longer needed since it is identical to (2.35). The equation (2.36) does
not constitute a relation between L and µP any more and has to be replaced
by the new equation pOk = pe.

Next we introduce the mass of the film of one cell

mA,FC =
∫

AC

µdA (6.1)

and the ratios

αO =
mO

mA
, αW =

mW

mA
(6.2)

We restrict our attention to the case that there are only cells of one type
of structure and of equal characteristic length L. Due to our simplifications,
equation (2.2) reduces to

mA = nmA,FC + kOmO + kWmW (6.3)

and yields the number of cells

n =
mA

mA,FC

(
1− kOαO − kWαW

)
(6.4)
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The oil and water masses must satisfy the inequalities — cf. (5.35), (5.36) —
(

1
%O(pO)

+
kO

%A(pO)

)
mO ≥ nVOC ,

(
1

%W(pW)
+

kW

%A(pW)

)
mW ≥ nVWC

(6.5)
which may be given the form

(( 1
%O(pO)

+
kO

%A(pO)

)mA,FC

VOC
+ kO

)
αO ≥ 1− kWαW (6.6)

(( 1
%W(pW)

+
kW

%A(pW)

)mA,FC

VWC
+ kW

)
αW ≥ 1− kOαO (6.7)

Of course, the number of cells cannot be negative so that (6.4) implies the
inequality

1− kOαO − kWαW ≥ 0 (6.8)

6.2 Consequences

If there is an oil excess then we have pO = pe, and (2.53), (2.54) imply

VWC

∫

AC

(
2(w − fµ+ peh) + c1m1 + c2m2

)
dA

= L
dVWC

dL

∫

AC

(
w − fµ+ peh+ pe

h3

12
K

)
dA (6.9)

If there is a water excess then we have pW = pe, and (2.53), (2.54) imply

VOC

∫

AC

(
2(w − fµ+ peh) + c1m1 + c2m2

)
dA

= L
dVOC

dL

∫

AC

(
w − fµ+ peh+ pe

h3

12
K

)
dA (6.10)

If there is an oil and a water excess (our former case 4), then (2.53), (2.54)
imply

∫

AC

(w − fµ) dA = −pe

(
h

∫

AC

dA+
h3

12

∫

AC

K dA

)
(6.11)

∫

AC

(c1m1 + c2m2) dA = pe
h3

6

∫

AC

K dA (6.12)

so that both (6.9) and (6.10) are valid. These are two equations for the
computation of L and µP. We denote the result by L∗ and µ∗P. Then VOC,
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VWC, and mA,FC are also fixed. Moreover, f is known from (2.41), and the
solution parameters kO and kW are obtained from (2.35)

f =
∂w

∂µ

(
L∗, µ∗P

)
=
∂fO
∂ kO

(kO, pe) +
pe

%A(pe)
=
∂fW
∂kW

(kW, pe) +
pe

%A(pe)
(6.13)

So each of the inequalities (6.6), (6.7), and (6.8) describes a half-plane in the
αO, αW-plane. All the pairs (αO,αW) within the intersection of these three
half-planes (region E in fig. 6.1.) give rise to the same film structure (with
L = L∗ and µ = µ∗P) as that of the point P∗ but differ in the number of cells
and the amounts of excess oil and excess water. Note that the extension of
the region E is considerably underestimated in the figure.

If (6.8) is violated then no monomolecular film exists and all of the
amphiphile is solved as monomers. The solution parameters are obtained
from the last equation of (6.13) and from the equality which results from
(6.8) when ≥ is replaced by =.

If there is a water excess but no oil excess (our former case 3), then
(6.10) constitutes a relation between L and µP. Since the equations (2.53)
and (2.54) are then linearly dependent, it is possible to obtain the oil pressure
from (2.54) alone as a function of L and µP as follows.

pO = pe +
1

VOC

∫

AC

(
w − fµ+ peh+ pe

h3

12
K

)
dA (6.14)

Then the solution parameters kO and kW may be obtained as functions of L
and µP from

f =
∂w

∂µ
=
∂fO
∂kO

(kO, pO) +
pO

%A(pO)
=
∂fW
∂kW

(kW, pe) +
pe

%A(pe)
(6.15)

Moreover, (6.6) must hold as an equality so that

αO =
(( 1

%O(pO)
+

kO

%A(pO)

)mA,FC

VOC
+ kO

)−1 (
1− kWαW

)
(6.16)

This equation describes points on a straight line in the αO, αW-plane (line
W in figure 6.1). Insertion of (6.16) into (6.7) gives

αW ≥
(( 1

%W(pe)
+

kW

%A(pe)

)mA,FC

VWC
+ kW

+kO

( 1
%W(pe)

+
kW

%A(pe)

)( 1
%O(pO)

+
kO

%A(pO)

)−1 VOC

VWC

)−1

(6.17)

The equality characterizes the point PW without water excess. Other pairs
(αO,αW) on the line W give rise to the same film structure as that of the
point PW but differ in the number of cells and the amount of excess water.
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In section 5.4, spheres and cylinders had to be treated separately due to
the lack of attached water in the presence of a water excess. This problem
does no longer exist, since the properties of the two kinds of water are now
assumed to be the same.

If we interchange the indices O and W in (6.16) and (6.17), we obtain a
line O, the points of which characterize states with an oil excess but no water
excess (our former case 2).

If there is neither a water excess nor an oil excess (our former case 1),
then two distinct procedures are needed.

1. If we regard the isometric bi-continuous structure (with ζ = 0), then
we can prescribe the characteristic length L and the pressure difference
p∆ = pO − pW. The value of µP is then determined by (5.30) and the
sum of the pressures pΣ = pO + pW by (5.33) so that the pressures are
given by

pO =
1
2
(
pΣ + p∆

)
pW =

1
2
(
pΣ − p∆

)
(6.18)

2. In case of any other structure, we can prescribe L and µP, and the
pressures pO and pW are obtained from (2.53) and (2.54).

Afterwards the solution parameters kO and kW are inferred from

f =
∂w

∂µ
=
∂fO
∂kO

(kO, pO) +
pO

%A(pO)
=
∂fW
∂kW

(kW, pW) +
pW

%A(pW)
(6.19)

The inequalities (6.6) and (6.7) now hold as equalities and allow to compute
the pair (αO, αW). Only such values of L and p∆ or µP, respectively, are to
be considered which yield pairs (αO, αW) that can be found in the region N
in figure 6.1. The width of that region is exaggerated in the figure. Actually,
the two bounding lines almost coincide and only differ noticeably in the
range of small αO and αW , where the length L is of the magnitude of the
thickness h.

6.3 The Total Energy Density

According to (2.20), (2.54), (6.1), (6.3), (2.12) and (6.19), the minimal free
energy of our system simplifies to

F = n

∫

AC

(
w + pe

(
h+

h3

12
K

))
dA

+
(
fO + peυO

)
mO +

(
fW + peυW

)
mW
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= f n

∫

AC

µdA+
(
fO + pOυO

)
mO +

(
fW + pWυW

)
mW

+
(
pO − pe

)(
nVOC − υOmO

)
+

(
pW − pe

)(
nVWC − υWmW

)

= fmA +
(
fO − fkO + pOυO

)
mO +

(
fW − fkW + pWυW

)
mW

= fmA +
(
fO(kO, pO)− kO

∂fO
∂kO

(kO, pO) +
pO

%O(pO)

)
mO

+
(
fW(kW, pW)− kW

∂fW
∂kW

(kW, pW) +
pW

%W(pW)

)
mW (6.20)

The underlined terms vanish because either pO − pe = 0 (if there is an oil
excess) or nVOC−υOmO = 0 (if no oil excess exists). We refer the free energy
of the system to the mass of the amphiphile and obtain what may be called
the total energy density.

F

mA
= f +

(
fO(kO, pO)− kO

∂fO
∂kO

(kO, pO) +
pO

%O(pO)

)
αO

+
(
fW(kW, pW)− kW

∂fW
∂kW

(kW, pW) +
pW

%W(pW)

)
αW (6.21)

On each of the lines W and O as well as in the region E of figure 6.1, the
values of f , kO, kW, pO, pW are constant. So the total energy density is a
linear function on those straight lines and in that region.

6.4 Solubility

In order to get numerical results, we need some assumption on the monomeric
solubility of the amphiphile in oil and water. Starting from the linear ansatz

fO(kO, pO)− kO
∂fO
∂kO

(kO, pO) ≡ − k2
O

∂

∂kO

(
fO
kO

)
= âO(pO)− aO(pO) kO

(6.22)
we find by integration

fO(kO, pO) = âO(pO) + aO(pO) kO ln kO + āO(pO) kO (6.23)

The condition (6.19) yields

f =
∂fO
∂kO

(kO, pO)+
pO

%A(pO)
= aO(pO)

(
ln kO +1

)
+ āO(pO)+

pO

%A(pO)
(6.24)

A comparison of (6.23) with (2.24) shows that aO actually cannot depend
on pO.
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In the following, we adopt a third simplifying assumption.

• The oil, the water and the solved amphiphile are incompressible.

Then not only the densities %O and %A but — according to (2.24) — also the
function fO and hence âO and āO do not depend on the pressure pO. Using
the abbreviation

f̂ =
f µb − w0

w1
=

(
1−Gs(c1P, c2P) + ln

µP

µb

)2

+G(c1P, c2P)− 1 (6.25)

according to (4.21), we obtain from (6.24) the solution parameter

kO = exp
(

w1

µbaO

(
f̂ − µbāO − w0

w1
− µb

h%A

pOh

w1

)
− 1

)
(6.26)

and from (6.21), (6.22) what may be called the dimensionless total energy
density

µb

w1

F

mA
= f̂ +

w0

w1
+

(
µbâO

w1
− µbaO

w1
kO +

µb

h%O

pOh

w1

)
αO

+
(
µbâW

w1
− µbaW

w1
kW +

µb

h%W

pWh

w1

)
αW (6.27)

6.5 Lamellae as a Reference

The comparison of the total energy density of different structures is simplified,
if we discuss their deviation from the total energy density of a reference
structure, which we choose to be the lamella, i.e. a plane surface. Water and
oil between the lamellae have to be considered as excesses so that we have
pO = pW = pe. Since c1 = c2 = 0, equation (6.12) is trivially satisfied while
(6.11) with (6.19) yields

w(0, 0, µ)− µ
∂w

∂µ
(0, 0, µ) + peh = 0 (6.28)

from which the mass density µL of the lamella and afterwards also f̂L, kOL,
and kWL can be computed. The surplus of the dimensionless total energy
density of any structure over that of the lamellae is given by

R =
µb

w1

(
F

mA
− F

mA

∣∣∣∣
L

)

= f̂ − f̂L −
(
µbaO

w1

(
kO − kOL

)
+

µb

h%O

(pe − pO)h
w1

)
αO

−
(
µbaW

w1

(
kW − kWL

)
+

µb

h%W

(pe − pW)h
w1

)
αW (6.29)
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and shall be called the rating function. In contrast to the total energy density,
the rating function does not depend on the material constants w0, âO, and
âW. (Note that kO depends not on w0 but only on the difference µbāO−w0.)

6.6 A Numerical Example

We choose the following values of the dimensionless constants of our model:
µb

h%O
=

1
0.9

µb

h%W
= 1.0

µb

h%A
= 1.0 (6.30)

µbāO − w0

w1
= 3.0

µbāW − w0

w1
= 4.0 (6.31)

µbaO

w1
= 1.0

µbaW

w1
= 1.0 (6.32)

κ = 0.02 q = 0.12
peh

w1
= 0.1 (6.33)

Important remark: It is not the intention of the following computation
to produce a quantitative agreement with any experiment. It shall rather be
demonstrated that the model is versatile enough to predict qualitative phase
behaviour which resembles that of real mixtures.

We restrict our attention to the case of equal volumes of water and oil,
αW

αO
=
mW

mO
=
%WVW

%OVO
=
%W

%O
=

1.0
0.9

(6.34)

The mixture can then be characterized, for example, by the variable

α =
mO +mW

mA
= αO + αW

(
= 2.11αO

)
(6.35)

In order to construct the following diagrams point by point we let a loop run
over an increasing sequence of values of L. Each of them determines the fields
of the curvatures c1, c2 while the field µ still depends on the unknown value
µP. Let us consider spheres or cylinders which enclose oil or bi-continuous
structures with negative ζ as examples. Because of (6.34), there must be a
water excess. However, if L is small enough, no oil excess is present. Then
µP may be computed by iteration from the nonlinear equation (6.10), and,
afterwards, pO from (6.14). (Both (6.10) and (6.14) are elaborated for the
different types of structures in chapter 5.) The values of f̂ , kO, and kW result
from (6.25), (6.26). Finally, αO and αW can be obtained from (6.16) and
(6.34), α from (6.35) and R from (6.29). If the sign of pO − pe changes from
one value of L to the next, then we have passed L∗, where not only pW=pe

but also pO=pe holds. Beyond that point, which we will later call point b,
the film is said to be saturated, (6.29) yields a linear dependence of R on α,
since f̂ , kO, kW, pO, and pW remain constant, and not only the water excess
but also an oil excess is present.
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6.7 Graphs of the Rating Functions

First, we choose h̄0 = 0. That means that the prestrain of the film is symmet-
ric with respect to its middle surface and no preferred curvature towards the
oil or the water side exists. Figure 6.2 gives the rating functions of various
bi-continuous structures over α. (The values of the rating functions of spheres
and cylinders are so large that their graphs are above the represented area.)
Of all the bi-continuous structures, the isometric one (with ζ = 0) yields the
lowest curve and hence requires the least amount of energy. However, if α is
small enough (on the left of point a) then lamellae, the rating function of
which is zero by definition, become more favoured. If α is large (on the right
of point b) then we have an oil and a water excess with equal volumes and
hence three phases. Our pair (αO, αW) then lies in the region E of fig. 6.1.
On the left of point b, there is neither an oil nor a water excess and we have
only one phase. Outside of the represented area, on the right-hand side of
some point c at about α = 82.0, the amount of amphiphile is so small that
it is totally solved as monomers and no film exists.
Remark: Our interpretation is based on a simplification. Actually the mono-
meric solubility of the amphiphile in oil and water will not be identical. (Our
numerical example gives values of kO ≈ 0.018 and kW ≈ 0.007.) There-
fore, if the volumes of pure oil and water are the same, then the oil-sided
and water-sided volumes of a bi-continuous structure must be different, if no
excess is allowed. This means that the value of ζ cannot be exactly equal
to 0. However, since the values of both kO and kW are small, that deviation
was ignored.

Next we allow a non-symmetric prestrain of the film and study the con-
sequences of the resulting preferred curvature.

In the case h̄0 = 0.04 (fig. 6.4), we again identify the limiting points a
and b. However, the lowest values of the rating function are obtained by the
bi-continuous structure with ζ = 0.05 on the right-hand side of point a and
with ζ = 0.15 at point b. From a to b, the value of ζ of the lowest graph is
continuously increasing. The positive sign of h̄0 implies that the film possesses
a preferred curvature towards the oil side. Since bi-continuous structures with
positive ζ show this property, they are favoured. But their oil-sided volume
is smaller than the water-sided one. If all of the existing water is enclosed (on
the left of point b), then there must be an oil excess, and we have two phases.
On the right of point b, we have, in addition, a water excess and hence three
phases.

Going back to the case of the smaller preferred curvature h̄0 = 0.005
(fig. 6.3), we note that a new important point d causes a more diverse be-
haviour. Between d and b, the lowest graphs represent again bi-continuous
structures with positive ζ. But between a and d, the isometric structure,
with ζ = 0, requires the least energy. Hence all of the oil and the water is
enclosed, no excesses exist, and we have just one phase.
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The case h̄0 = 0.08 (fig. 6.5) reveals a further phenomenon. On the
right-hand side, the graphs of cylinders (C) and spheres (S) enclosing oil
are below those of the bi-continuous structures, characterized by their values
of ζ. Point b separates states where all of the oil is enclosed (to the left) from
states with an oil excess (to the right). There is always excess water which
dilutes the microemulsion. Thus we have a transition from one phase to two
phases. The new point e separates the reign of the bi-continuous structures,
where we have an oil excess, from the reign of the cylinders and hence marks
a transition from two phases to one phase.

6.8 The Phase Map

The points a, b, etc. which we have constructed mark phase transitions
corresponding to different values of h̄0. If we introduce them into a map
(fig. 6.6) and connect them, then we obtain boundaries of the various phase
regions of a mixture. The preferred curvature of an amphiphilic film can be
tuned, for example, by the temperature. Often, low temperatures induce a
curvature towards the oil. In this case, the vertical axis of fig. 6.6 may be
interpreted as an axis of decreasing temperature. On the horizontal axis, we
do not use the variable α but — in accord with familiar representations —
its inverse

γ =
1
α

=
mA

mO +mW
(6.36)

which increases with an increasing amount of amphiphile.

It is sufficient to present the upper half of the map. If the properties of
oil and water were the same, then the lower half would be obtained by a mere
reflexion and an interchange of the indices O and W. Now, the distinction
between the properties of oil and water leads to somewhat different numerical
results but does not alter the qualitative picture. The regions are denoted by
L, B, C, or S, if the structures which give the mixture its lowest energy
are lamellar, bi-continuous, cylindrical or spherical. If excess oil or water is
present in addition to the microemulsion, then this is indicated by an upper
index O and a lower index W, respectively. An index in brackets means that
no separate excess phase exists but that the excess outside of cylinders or
spheres merely dilutes the microemulsion.

Observing fig. 6.5 we notice that the graphs of the rating functions of
cylinders and spheres almost coincide in case of large α. So it will be a matter
of chance whether cylinders or spheres are actually formed. Therefore this
possibility is bracketed in fig. 6.6.
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6.9 The X Point

Of great practical importance is the existence of the so-called X point on the
horizontal axis within the region where bi-continuous structures are preferred.
It characterizes the minimum amount of amphiphile necessary to enclose all
of the oil and the water. If more amphiphile is present then there will also be
only one phase. If, however, the amount of amphiphile is smaller, then not all
of the oil and the water is contained within the microemulsion and we find an
oil excess and a water excess. If we only change the temperature and hence
the preferred curvature of the amphiphile, then an oil excess in the case of a
positive curvature and a water excess in the case of a negative one appears.

The existence of the X point is only guaranteed if a sufficient prestrain of
the outer layers of the film is present. Only then, the energy of an isometric
bi-continuous structure is smaller than that of lamellae. To prove this, we
first use the abbreviation

ωO = exp
(
− w1

µbaO

(µbāO − w0

w1
+

µb

h%A

pOh

w1

)
− 1

)
(6.37)

and write (6.26) in the form

kO = ωO exp
(

w1

µbaO
f̂

)
≈ ωO

(
1 +

w1

µbaO
f̂

)
(6.38)

The replacement of the exponential function by a truncated Taylor series
is admissible because our numerical computations have revealed that the
absolute value of the argument of the exponential function is small.

If we note in addition that pO = pW = pe is valid at the X point, since
we have an oil and a water excess on the left of it , the rating function (6.29)
reduces to

R =
(
f̂ − f̂L

)
(1− ωOαO − ωWαW) (6.39)

Now, the numerical investigation has proved ωO and ωW to be rather small.
Therefore the expression in the second bracket will be positive even in the
case of large αO and αW. We arrive at the conclusion: The existence of the
X point requires — note (6.25) —

f̂ − f̂L =
µb

w1

(
f − fL

)
< 0 (6.40)

So the isometric bi-continuous structure must have a smaller value of f than
the lamella.

6.10 Symmetry Breaking

In order to evaluate the last condition, we first introduce (4.20) into (4.24)

w− fµ = w−µ∂w
∂µ

= 2w1 exp
(
Gs

)
exp

(− 1 +
√

1− ν
)(

1−√1− ν
)

(6.41)
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with the abbreviation — note (6.25) —

ν = G− f µb − w0

w1
= G− f̂ (6.42)

Next we notice that the absolute value of ν is small so that the lengthy
function of ν may be replaced by the first term of its Taylor series.

2 exp
(− 1 +

√
1− ν

)(
1−√1− ν

) ≈ ν (6.43)

Thus we arrive at

w − fµ = w1 exp
(
Gs

)
ν = w1 exp

(
Gs

)(
G− f̂

)
(6.44)

The condition (6.11) must hold at the X point and reads

0 =
∫

AC

(
w − fµ+ pe

(
h+

h3

12
K

))
dA

=
∫

AC

(
w1 exp

(
Gs

)(
G− f̂

)
+ pe

(
h+

h3

12
K

))
dA (6.45)

Thus we obtain

f̂

∫

AC

exp
(
Gs

)
dA =

∫

AC

G exp
(
Gs

)
dA+

peh

w1

∫

AC

(
1 +

h2

12
K

)
dA (6.46)

which simplifies in the case of a lamella to

f̂L exp
(
Gs L

)
= GL exp

(
Gs L

)
+
peh

w1
(6.47)

and leads to

f̂L

∫

AC

exp
(
Gs

)
dA

=
∫

AC

GL exp
(
Gs

)
dA+

peh

w1

∫

AC

exp
(−Gs L

)
exp

(
Gs

)
dA (6.48)

Finally the difference of (6.46) and (6.48) yields

(
f̂ − f̂L

) ∫

AC

exp
(
Gs

)
dA =

∫

AC

(
G−GL

+
peh

w1

((
1 +

h2

12
K

)
exp

(−Gs

)− exp
(−Gs L

))
)

exp
(
Gs

)
dA

(6.49)

The integrals are taken over one cell of the isomorphic bi-continuous struc-
ture. The condition (6.40) can by no means be satisfied unless the underlined
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expression is negative somewhere on that structure. In order to check this, we
use the truncated Taylor series (4.37) and (4.39). We must put h̄0 = 0 and,
in the case of a lamella, h̄ = 0, d̄ = 0, while we have h̄ = 0, but d̄ 6= 0 in the
case of the isometric bi-continuous structure. So the underlined expression of
(6.49) is approximated by

4
3

(
κ− 4

15
q

)
d̄ 2 +

4
15

(
1
3

+ 2κ− 4
7
q +

1
6
peh

w1
exp

(
− 2

3
q
))

d̄ 4 (6.50)

Neither of the two terms can be negative, if

q ≤ 7
2
κ (6.51)

is valid, since κ represents an elastic shear stiffness of the film and is surely
positive. On the other hand, a positive value of q indicates a positive prestrain
(and a positive prestress, i.e. a tension) in the outer layers. Therefore, if we
have a negative prestrain, no prestrain at all, or a positive prestrain which is
not strong enough, then the existence of an X point is excluded.

On the contrary, if the positive prestrain of the outer layers satisfies the
condition

q >
15
4
κ (6.52)

then the first term in the expression (6.50) is obviously negative and the
corresponding graph looks as shown in fig. 6.7 (solid line). So the underlined
expression in (6.49) becomes negative on those parts of the bi-continuous
structure where |d̄| is not too large.

Our choice (6.33) of the values of κ and q satisfies (6.52) and, indeed,
produces a phase map with an X point and yields the solid line of fig. 6.7.
On the other hand, if the numerical computation is performed without a
prestrain, i.e. with q = 0, then we obtain the dashed line of fig. 6.7, the
rating functions of all bi-continuous structures turn out to be positive and
an X point does not exist.

The influence of the environmental pressure is rather weak, it only mod-
ifies the second term in (6.50) but not the first one. If we ignore it, then the
underlined expression in (6.49) reduces to G−GL which approximately mea-
sures the difference of the energy density (per unit mass) of the bi-continuous
structure and the lamella. This is seen from the underlined terms of (4.41),
while the remaining term contains the small quantity ν2.

If no prestrain is present, then we have a convex function with its min-
imum at d̄ = 0, and the energy of the lamella is smaller than that of a
bi-continuous structure. If there is enough prestrain, however, then we find a
phenomenon of symmetry breaking, namely two minima according to fig. 6.7,
and the energy of a bi-continuous structure is less than that of the lamella.
Although the film is isotropic (has no preferred material directions), it prefers
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an anisotropic configuration (with the distinguished local directions of the
principal curvatures of opposite sign). A similar phenomenon is well known
from everyday life: A desiccating slice of bread takes the form of a hyper-
boloid (fig. 6.8), presumably since a state of tension develops in the outer
layers.

The influence of the prestrain parameter q is illustrated in fig. 6.9. Line
b indicates the position of the X point and line a the boundary between
the isomorphic bi-continuous phase and the lamellar phase. It will be shown,
however, in subsection 6.11.4 that a coexistence of both phases will develop on
the right-hand side of line f. The horizontal line indicates the value q = 0.12,
on which our numerical treatment and hence the construction of fig. 6.2 was
based. When q drops to q = 0.075 = 15 · 0.02/4 = 15κ/4, then the lines
approach γ = 0, since smaller values of q exclude the existence of an X
point. If γ > 0.35 then the three lines are well approximated by the linear
expressions (dotted lines in fig. 6.9)

qb = 0.0605 + 0.085 γ , qf = 0.0640 + 0.066 γ , qa = 0.0675 + 0.044 γ
(6.53)

6.11 Coexistence of Two Structures

6.11.1 The Mixing Rules

We consider two tubes with two different mixtures containing different struc-
tures. Let the total mass of amphiphile mA be partitioned among the two
tubes according to

mA 1 = (1− ψ)mA , mA 2 = ψmA with ψ ∈ [0, 1] (6.54)

Moreover, we have

mO = αOmA = mO 1 +mO 2 = αO 1mA 1 + αO 2mA 2 (6.55)

Dividing by mA we obtain

αO = (1− ψ)αO1 + ψ αO2 (6.56)

and, analogously,

αW = (1− ψ)αW1 + ψ αW2 (6.57)

With the abbreviation

ȳO ≡ fO(kO, pO)− kO
∂fO
∂kO

(kO, pO) +
pO

%O(pO)
= fO(kO)− kO

dfO
dkO

(kO) +
pO

%O

(6.58)
— where the last form is valid under the assumption of incompressibility —
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the minimal free energy of each of the two systems may be written (note
(6.20))

Fk = fk mAk+ȳOk mOk+ȳWk mWk =
(
fk+ȳOk αOk+ȳWk αWk

)
mAk k = 1, 2

(6.59)
and the free energy — not necessarily minimal — of the whole system is
therefore

F = F1 + F2 =
(
(1− ψ) f1 + ψ f2

)
mA

+
(
(1− ψ) ȳO1 αO1 + ψ ȳO2 αO2

)
mA +

(
(1− ψ) ȳW1 αW1 + ψ ȳW2 αW2

)
mA

(6.60)

whence follows
F

mA
= (1− ψ)

F1

mA 1
+ ψ

F2

mA 2
(6.61)

The minimal free energies of the corresponding lamellae are

FLk =
(
fL + ȳOL αOk + ȳWL αWk

)
mAk k = 1, 2 (6.62)

and this implies

R = (1− ψ)R1 + ψR2 (6.63)

If we bring the two mixtures together in one tube, then we get a resulting
mixture with two coexisting structures. Its parameters αO and αW as well
as its total energy density and its rating function are obtained from those of
the original two systems by the mixing rules (6.56), (6.57), (6.61), (6.63).

6.11.2 A Coarse Treatment of the Coexistence

Let us go back to fig. 6.5 and single out the graphs of R of the mixture with a
bi-continuous structure of ζ=0.12 (referred to as B) and of the mixture with
cylinders which enclose oil (referred to as C). We can generate a resulting
mixture with the parameter α by combining the two mixtures B and C with
the parameters α1 and α2, respectively. The graph of the corresponding rating
function according to the rule (6.63) is given by the straight line BC in the
interval α1 ≤ α ≤ α2 in fig. 6.10. The rating function and hence the free
energy of the two coexisting structures is obviously less then that of any of
the single structures. Moreover, we have chosen the values of α1 and α2 of
our example in such a manner as to give the straight line its lowest possible
position.

In a similar manner, the straight line LC describes the coexistence of a
mixture with lamellae (with α = 0) and a mixture with cylinders. We see
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that the corresponding rating function is lower than that of a mixture of B
and C or of bi-continuous structures alone.

So fig. 6.6 must obviously be reinterpreted. The lines a and e do not
separate regions with totally distinct structures. Instead, they are surrounded
by bands of coexisting structures.

6.11.3 A Refined Treatment

According to section 2.5, a coexistence can only persist, if the additional
conditions

pO ≡ pO1 = pO2 , pW ≡ pW1 = pW2 (6.64)

kO ≡ kO1 = kO2 , kW ≡ kW1 = kW2 (6.65)

are satisfied and hence also

f ≡ f1 = f2 =
∂w

∂µ
=
∂fO
∂kO

+
pO

%A
=
∂fW
∂kW

+
pW

%A
(6.66)

and

ȳO ≡ ȳO1 = ȳO2 , ȳW ≡ ȳW1 = ȳW2 (6.67)

This implies that the total energy density of a system with coexisting struc-
tures may be calculated by the same formula

F

mA
= f + ȳO αO + ȳW αW (6.68)

as in the case (6.21) with only one kind of structure.
In the example of the coexistence of B and C, the mixture B possesses

an oil excess, which implies pO = pe, pW 6= pe, while the mixture C is diluted
by excess water, which implies pO 6= pe, pW = pe. So the conditions (6.64)
to (6.67) are not satisfied. This means that the coexistence of B and C in
the described manner cannot be stable since it does not satisfy the necessary
conditions of minimal free energy. Therefore, the construction of fig. 6.10 is
too simple and only gives an upper bound of the minima of R.

In order to obtain a more general result, we consider the quantities αO

and αW as given and determine αO1, αO2, αW1, αW2, and ψ from the condi-
tion that the rating function R be minimal under the side conditions (6.56)
and (6.57). Introducing the Lagrangean parameters λO and λW, we arrive at

(1− ψ)R1(αO1, αW1) + ψR2(αO2, αW2)

+λO

(
αO − (1− ψ)αO1 − ψ αO2

)
+λW

(
αW − (1− ψ)αW1 − ψ αW2

)
= min

(6.69)
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The postulate that the derivatives with respect to λO and λW must vanish
yields the equations (6.56) and (6.57). The derivatives with respect to αO1,
αO2, αW1, and αW2 are zero, if

∂R1

∂αO1
=

∂R2

∂αO2
= λO ,

∂R1

∂αW1
=

∂R2

∂αW2
= λW (6.70)

holds, and the derivative with respect to ψ is zero, if we have

R2 −R1 = λO

(
αO2 − αO1

)
+ λW

(
αW2 − αW1

)
(6.71)

In order to obtain the derivatives of (6.70) we go back to (6.59)

Fk = fk mAk + ȳOk mOk + ȳWk mWk (6.72)

This expression gives the minimal free energy of a mixture with the fixed
masses mAk, mOk, mWk under the restriction to one kind of structure. If
another mixture with slightly different masses is considered, then the param-
eters of the structure, the pressures etc. and hence also the values of fk, ȳOk,
and ȳWk will be different. Therefore the increment of the minimal free energy
is obtained from

dFk = dfk mAk + dȳOk mOk + dȳWk mWk+fk dmAk + ȳOk dmOk + ȳWk dmWk︸ ︷︷ ︸
(6.73)

However, the underlined expression is zero so that only the underbraced one
remains. This follows from the fact that the free energy Fk is a minimum and
hence dFk = 0 must be valid, if the masses are kept constant but any other
parameter varied. We further infer

d

(
Fk

mAk

)
=

dFk

mAk
− Fk dmAk

m2
Ak

= ȳOk d

(
mOk

mAk

)
+ ȳWk d

(
mWk

mAk

)
= ȳOk dαOk + ȳWk dαWk

(6.74)

Since the rating function is defined by

Rk =
µb

w1

(
F

mA

∣∣∣∣∣
k

− F

mA

∣∣∣∣∣
Lk

)
(6.75)

according to (6.29), we obtain

∂Rk

∂αOk
=
µb

w1

(
ȳOk − ȳOL

)
(6.76)

So (6.70) leads to

λO =
µb

w1

(
ȳO1 − ȳOL

)
=
µb

w1

(
ȳO2 − ȳOL

)
(6.77)
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and

λW =
µb

w1

(
ȳW1 − ȳWL

)
=
µb

w1

(
ȳW2 − ȳWL

)
(6.78)

and this implies the relations (6.67), which are known from chapter 2.
Introducing (6.59), (6.62) into (6.75), we arrive at the representation

Rk =
µb

w1

(
fk − fL +

(
ȳOk − ȳOL

)
αOk +

(
ȳWk − ȳWL

)
αWk

)
(6.79)

Noting (6.77),(6.78), the condition (6.71) is seen to be satisfied if f1 = f2
holds, in accordance with (6.66), as was also derived in chapter 2.

Now, let us define a new pair of orthogonal axes in the αO, αW-plane by

α∗ =
1
g

(
λO αO + λW αW

)
, α∗∗ =

1
g

(
− λW αO + λO αW

)
(6.80)

This implies

∂Rj

∂α∗j
=

g

λ2
O + λ2

W

(
λO

∂Rj

∂αOj
+ λW

∂Rj

∂αWj

)

∂Rj

∂α∗∗j
=

g

λ2
O + λ2

W

(
−λW

∂Rj

∂αOj
+ λO

∂Rj

∂αWj

)
(6.81)

and (6.70), (6.71) yield

∂R1

∂α∗1
=
∂R2

∂α∗2
=
R2 −R1

α∗2 − α∗1
= g (6.82)

∂R1

∂α∗∗1
=

∂R2

∂α∗∗2
= 0 (6.83)

Now, λO and λW depend on the actual problem according to (6.77), (6.78).
In our coarse approach, however, we decreed

λO = λW = g =⇒ α∗ = α ≡ αO + αW (6.84)

Our construction satisfies (6.82) — g gives the value of the gradient of the
straight line as well as of the derivatives of the two graphs at its ends — but
(6.83) is surely not fulfilled.

Fig. 6.11 visualizes the situation in the αO, αW-plane. The point M char-
acterizes the given mixture. The coarse approach represents it as a coexis-
tence of a mixture of type BO and a mixture of type C(W). Each of these
three mixtures has equal volumes of oil and water and hence the same value
of the ratio αW/αO. The points B and C represent mixtures with the same
structures but without the oil excess and the diluting excess water, respec-
tively. The connecting line between B and BO is a line of type O according
to fig. 6.1 while the connecting line between C and C(W) is a line of type W.
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Now, if the two coexisting structures exchange all of their excess oil and
water then each of them may reach a state of lower free energy. An example
is given by the points B̄ and C̄. Since there is no excess, neither of the values
of pO or pW must equal pe any longer.

However, it is arduous to find the points B̄ and C̄ which minimize the
rating function of a given point M. Therefore we adopt an inverse proceeding.
First, we choose

g2 = λ2
O + λ2

W , λO = g cos δ , λW = g sin δ (6.85)

and obtain

α∗ = cos δ αO + sin δ αW , α∗∗ = − sin δ αO + cos δ αW (6.86)

Next, we select one special angle δ and hence one special orthogonal co-
ordinate system α∗, α∗∗.

We might think of seeking all those points in the plane where the gradient
vector of R1 and R2, respectively, is parallel to the α∗ axis so that (6.83) is
satisfied. These points then constitute trajectories TB and TC in the plane.
Actually, it is not necessary to carry through this task. We see this if we
consider the region N of fig. 6.1, which characterizes states without excesses.
The representation of fig. 6.11 is even more realistic, showing that these
regions are extremely narrow. Numerical studies reveal that the values of
ȳOk, ȳWk, pOk, pWk, kOk, kWk vary rapidly over the width of N. The same is
true with the derivative of R in the direction of the normal to the trajectory,
and hence also the derivative ∂R/∂α∗∗ will show a marked variation. (The
pathological case where the chosen α∗∗ axis is parallel to a local tangent
of the trajectory may be excluded and does not cause problems.) So the
aforementioned trajectory, characterized by ∂R/∂α∗∗=0, can be found within
this region N or in its immediate neighbourhood. (When only one kind of
structure was admitted, this neighbourhood indicated an excess, but now we
treat two coexisting structures without excesses.)

In contrast to this, the variation of the rating function R and hence of
the derivative of R in the direction of the trajectory over the width of N is
negligible. So the mentioned trajectory need not really be constructed. It is
sufficient to calculate R on a trajectory which has already been investigated,
namely, one of the boundaries of the region N, characterized by the conditions
pO = pe or pW = pe. If the rating functions on these trajectories are plotted
over the α∗ axis, then (6.82) can be fulfilled by a construction like that of
fig. 6.10. So the coordinates αO1, αW1 and αO2, αW2 of two special points
B̄ and C̄ are gained. If we connect these points by a straight line then the
minimal rating function of any point M on that line is obtained from (6.56),
(6.57), (6.63). Finally, this procedure has to be performed with various angles
δ in order to obtain information for a whole region in the αO, αW-plane. The
straight lines corresponding to values of δ from the intervall [−54◦, 39◦] can
be seen in fig. 6.12.
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We notice that it is necessary to regard also a part of the trajectory TB

beyond the point P∗. (That point limited the region of two excesses, when
only one kind of structure was admitted.) The evaluation for points with the
constant ratio αW/αO according to (6.34) (dashed line in fig. 6.12) can be
found in fig. 6.13. We obtain the new graph BC, which is definitely below the
old one based on the coarse approach.

If we connect the two graphs BC and C by a straight line BCC in the
sense of the coarse approach, we identify states with even lower values of the
rating function. This indicates that a refined treatment of this coexistence of
one bi-continuous structure with two kinds of cylinders might reveal that, in
this case, the minimum condition of the free energy even favours a coexistence
of three different structures.

6.11.4 Coexistence with Lamellae

We come back to line LC of fig. 6.10, which was constructed on the basis
of the coarse approach, and want to prove that this line also satisfies the
requirements of the refined treatment. We numerate the mixtures with lamel-
lae and cylinders by 1 and 2, respectively. If we would attribute some oil to
the lamellae, then its pressure had to satisfy pO1 = pe which conflicts with
the postulate (6.64). So only the choice αO1 = 0 is admissible, letting ȳO1

undefined. Moreover, the rating function of lamellae is zero by definition, and
hence R1 ≡ 0. Thus (6.69) reduces to

ψR2(αO2, αW2) + λO

(
αO − ψ αO2

)

+λW

(
αW − (1− ψ)αW1 − ψ αW2

)
= min (6.87)

The derivatives of this expression with respect to αO2, αW1, αW2, and ψ are
zero, if

λO =
∂R2

∂αO2
=

R2

αO2
, λW =

∂R2

∂αW2
= 0 (6.88)

hold. The second postulate is satisfied according to (6.76) (read W instead
of O) by

ȳW2 = ȳWL = ȳW1 (6.89)

and the first one according to (6.76), (6.79), and (6.89) by f2 = fL = f1 and

λO =
µb

w1

(
ȳO2 − ȳOL

)
(6.90)

But equal values of ȳW and f of the two coexisting mixtures imply equal
values of pW and kW of the water excesses that are attributed to the lamellae
and to the cylinders. Actually, a separation of these two excesses is impossible
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and physically meaningless. So different choices of αW1 and αW2 must yield
the same result. Two possibilities A and B are singled out in the qualitative
picture of fig. 6.14. As in fig. 6.1, the line W characterizes states with constant
values of f2, ȳO2, and hence λO. However, the values of αO2, of ψ = αO/αO2

according to (6.56), and, with (6.77), (6.79), of R2 = λOαO2 are not constant
on that line. Nevertheless, the two possibilities A and B yield the same value
of R at the point M, namely — note (6.63) —

R = ψR2 =
αO

αO2
R2 = λOαO (6.91)

In case A, we have chosen αW1 = 0, thus attributing all of the water to the
cylinders as was done in the construction of fig. 6.10. Our numerical com-
putation was based on the assumption α2/αO2 = const (= 2.11). Therefore,
(6.88) implies

∂R2

∂α2
=
R2

α2
(6.92)

and this was, indeed, the basis of the construction of fig. 6.10, which is,
therefore, seen to satisfy the refined requirements of coexistence.

It is also interesting to study the coexistence of lamellae with the iso-
metric bi-continuous structure in the case h0 = 0. Since neither pO nor pW

are equal to pe, only the choice αO1 = αW1 = 0 is possible. The minimization
of R leads to

R2 = αO2
∂R2

∂αO2
+ αW2

∂R2

∂αW2
= α2

∂R2

∂α2
(6.93)

The result is illustrated in fig. 6.15. The point b represents the X point,
i.e. the transition from one to three phases, point a would mark the phase
boundary between the bi-continuous and the lamellar phase, but actually, a
coexistence of both phases gives lower values of the free energy in a region
which extends from α = 0 to the new point f, characterized by the condition
(6.93).
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Appendices

A Tensor Notation
Symbolic vector and tensor notation is used. Bold face minuscules and majus-
cules v, T denote vectors and second-order tensors, respectively. A second-
order tensor is thought to be a linear mapping from one vector space to the
same or to another vector space, both equipped with an inner product. The
dot product, cross product and dyadic product of two vectors is written a ·b,
a×b, a⊗b. A tensor can be represented as a sum of dyadic products, and the
dot product of a dyadic product and a vector is defined by a⊗b ·v = (b ·v)a.
The dot product of two dyadic products is defined by a⊗b·c⊗d = (b·c)a⊗d
and the double dot product by a⊗ b : c⊗ d = (a · c)(b · d).

If vectors and tensors are referred to an orthonormal basis {e1, e2, e3}, then
these operations in three-dimensional space read

v =

3∑
i=1

viei T =

3∑
k=1

3∑
l=1

tkl ek ⊗ el T · v =

3∑
k=1

( 3∑
l=1

tklvl

)
ek

T ·W =

3∑
k=1

3∑
n=1

( 3∑
l=1

tklwln

)
ek ⊗ en T : W =

3∑
k=1

3∑
l=1

tklwkl

Accents are sometimes used to indicate fields which are to be differen-
tiated. So ∇T (á · b) means that the differentiation ∇T acts on the vector
field a alone, while b is treated as a constant vector. If there is no ambiguity,
accents will be omitted.

B Description of a Material Surface

B.1 Actual and Reference Placement

The points of a material surface may uniquely be characterized by their
position vector x0 in a reference placement of the surface in three-dimensional
observer space V . (This may be the placement at time t = 0 or some fictitious
placement. An example would be the placement of a part of a sphere in
a plane by means of Mercator’s projection.) Vectors dx0 from x0 to the
reference positions of infinitesimally neighbouring material points constitute
the tangential plane T0 at x0.

Given the actual placement of the material surface, the position vector
of the material point is x, and the vectors dx constitute the actual tangential
plane T , the unit normal vector of which will be denoted by n.
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A field Φ that is defined on the material surface may be represented as a
function of the vector x (Eulerian description) or as a function of the vector
x0 (Lagrangean description), i.e.,

Φ = Φ̄(x) = Φ̃(x0) (B.1)

It was Sommerfeld[14] who pointed out that fluids as well as solids may be
described in Eulerian as well as in Langrangean manner. When passing to an
infinitesimally neighbouring material point the increment of Φ is

dΦ = Φ̄(x)⊗∇T · dx = Φ̃(x0)⊗∇T0 · dx0 (B.2)

The operators ∇T and ∇T0 denote tangential differentiation with respect to
the position vectors x and x0, respectively, and their algebraical behaviour
is that of vectors in T and T0, respectively. Component formulae of these
operations will be given in chapters H and J.

Considering as a first choice Φ = x, we find

dx = x⊗∇T · dx = x⊗∇T0 · dx0 (B.3)

The symbols (̄) and (̃) are omitted from now on. Obviously, x ⊗ ∇T is the
identical mapping on the tangential plane T ,

x⊗∇T = 1T (B.4)

while the transplacement

F = x⊗∇T0 (B.5)

which is an invertible mapping from T0 into T , connects the material line
elements dx0 and dx of the reference and the actual placement according to

dx = F · dx0 (B.6)

We note

F · F−1 = 1T , F−1 · F = 1T0 . (B.7)

The tensors 1T and F may as well be interpreted as mappings of the observer
space V into itself, but are then no longer invertible. The identical mappings
on V and T are related by

1 = 1T + n⊗ n (B.8)

Introducing (B.6) into (B.2) we obtain

Φ⊗∇T · dx = Φ⊗∇T · F · dx0 = Φ⊗∇T0 · dx0 (B.9)

for any dx0 and hence the relation

Φ⊗∇T · F = Φ⊗∇T0 (B.10)
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or with (B.7)

Φ⊗∇T0 · F−1 = Φ⊗∇T · 1T = Φ⊗∇T (B.11)

The second choice Φ = n gives rise to

dn = n⊗∇T · dx = n⊗∇T0 · dx0

= −C · dx = −C · F · dx0 (B.12)

with the definition of the curvature tensor C by

C = −n⊗∇T (B.13)

and a comparison shows

C · F = −n⊗∇T0 (B.14)

B.2 Motion of the Surface

Next, we study the (temporal) rate of fields during a motion of the mate-
rial surface. The velocity v of a material point is simply the material time
derivative of its actual position, i.e.,

v = ẋ (B.15)

and the rate of the transplacement F is obtained by differentiation of (B.5)

Ḟ = ẋ⊗∇T0 = v ⊗∇T0 (B.16)

(Note that the material time derivative (̇), evaluated at fixed x0, commutes
with the spatial derivative ∇T0 with respect to x0 — but not with ∇T ! —
according to Schwarz’s theorem.)
We also need the rate of deformation tensor — note (B.11) —

L ≡ Ḟ · F−1 = v ⊗∇T0 · F−1 = v ⊗∇T (B.17)

which is seen to be the tangential velocity gradient on the actual surface.
The actual unit normal n is orthogonal to any dx ∈ T . Thus we have

0 = n · dx = n · F · dx0 (B.18)

for any dx0 and hence

0 = n · F (B.19)

The time derivative of this equation yields a statement on the rate of the
unit normal

ṅ · F = −n · Ḟ (B.20)

Since n · n = 1 implies

ṅ · n = 0 ⇒ ṅ ∈ T (B.21)
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we infer from (B.20)

ṅ · F · F−1 = ṅ · 1T = ṅ = −n · Ḟ · F−1 = −n · L (B.22)

and hence with (B.17)

ṅ = −n · (v ⊗∇T

)
(B.23)

Differentiating (B.14) we get information on the rate of the curvature tensor

Ċ · F + C · Ḟ = −ṅ⊗∇T0 (B.24)

From this we infer

Ċ · F · F−1 + C · Ḟ · F−1 = −ṅ⊗∇T0 · F−1 (B.25)

or — with (B.7) and (B.11) —

Ċ · 1T + C · L = −ṅ⊗∇T (B.26)

The rate of a material line element is obtained by differentiating (B.6)

ḋx = Ḟ · dx0 = L · dx (B.27)

Two orthogonal material line elements dx1 = ds1e1 and dx2 = ds2e2 deter-
mine a material surface element according to

da = dx1 × dx2 = ds1ds2 e1 × e2 = dAn (B.28)

The rate of its area is given by — note (B.21), the fact that e1, e2, n form
a right-handed orthonormal basis, and the identities a · (b× c) = (a× b) · c
and b× c = −c× b —

n · ḋa = n ·
(

˙dAn + dA ṅ
)

= ˙dA =

n ·
(

˙dx1 × dx2 + dx1 × ˙dx2

)
= n ·

(
(L · dx1)× dx2 + dx1 × (L · dx2)

)
=

ds1ds2

(
(e2 × n) · L · e1 + (n× e1) · L · e2

)
=

dA
(
e1 · L · e1 + e2 · L · e2

)
= dA

(
e1 ⊗ e1 + e2 ⊗ e2

)
: L = dA1T : L (B.29)

and hence

˙dA
dA

= 1T : L = 1T : v ⊗∇T = v · ∇T = ∇T · v (B.30)
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B.3 The Vicinity of the Surface

The position vector of a point in the vicinity of a given surface may be written

xz = x + z n(x) (B.31)

Here x is the position vector of a point on the surface, where the unit normal
vector is n, and |z| is the shortest distance of the point under discussion from
the surface, i.e. the distance measured in the direction of n. We may extend
n into the vicinity of the surface by defining the following three-dimensional
vector field

n(xz) = n(x) (B.32)

C Properties of the Curvature Tensor

C.1 Symmetry of the Curvature Tensor

We may interpret z(xz) as a three-dimensional scalar field in the vicinity of
the surface and note that its spatial gradient is nothing but the vector field
n(xz), defined in (B.32). The vector n does not change when z varies while
x is fixed. Hence we have

n = ∇z and
∂n
∂z

= 0 (C.1)

On the surface, we have

∇ = ∇T + n
∂

∂z
(C.2)

and therefore
C = −n⊗∇T = −n⊗∇+

∂n
∂z

⊗ n = −∇⊗∇z (C.3)

This reveals the symmetry of the curvature tensor C.

C.2 Invariants of the Curvature Tensor

The tensor C, connnecting dx ∈ T with dn ∈ T according to (B.12) — note
that differentiation of n · n = 1 yields dn · n = 0 — is a mapping of T into
itself, and since it is symmetric, it possesses a spectral representation

C = c1 e1 ⊗ e1 + c2 e2 ⊗ e2 (C.4)

with the principal curvatures c1, c2 and the principal axes given by the
orthonormal vectors e1, e2 ∈ T . The tangential unity tensor may also be
represented by means of these vectors in the form

1T = e1 ⊗ e1 + e2 ⊗ e2 (C.5)
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The classical invariants of the curvature tensor are the trace and the (two-
dimensional) determinant

trC = 1T : C = c1 + c2 (C.6)

detC = c1c2 (C.7)

The two-dimensional tensor C satisfies the equation of Cayley-Hamilton

C2 − trC C + detC 1T = 0 (C.8)

which is easily verified if we write down the components of this tensor equa-
tion with respect to the principal axes

c21 − (c1 + c2) c1 + c1c2 = 0 ,

c22 − (c1 + c2) c2 + c1c2 = 0 (C.9)

The trace of (C.8), i.e. the sum of the last two equations yields

C : C− (
trC

)2 + 2detC = 0 (C.10)

or
c21 + c22 − (c1 + c2)2 + 2c1c2 = 0 (C.11)

Half of the trace and the determinant are also called mean curvature H and
Gaussian curvature K, respectively.

H = 1
2 trC = 1

2 (c1 + c2) K = detC = 2H2 − 1
2C : C = c1c2 (C.12)

Another useful invariant is

D2 = H2 −K =
(
c1 − c2

2

)2

(C.13)

while D = (c1 − c2)/2 is not invariant since the numbering of the principal
curvatures is arbitrary.

The rate of the curvature tensor can be derived from equation (C.4),
giving

Ċ = ċ1 e1⊗e1+ċ2 e2⊗e2+c1
(
ė1⊗e1+e1⊗ė1

)
+c2

(
ė2⊗e2+e2⊗ė2

)
(C.14)

which allows to conclude

e1 · Ċ · e1 = ċ1 , e2 · Ċ · e2 = ċ2 (C.15)

From this we obtain the rate of the trace
˙trC = ċ1 + ċ2 =

(
e1 ⊗ e1 + e2 ⊗ e2

)
: Ċ = 1T : Ċ (C.16)

The rate of the determinant is given by

˙detC =
1
2

˙((
trC

)2 −C : C
)

= −(
C− trC1T

)
: Ċ (C.17)

or, explicitly,
˙c1c2 = c2ċ1 + c1ċ2 (C.18)

89



C.3 Functions of the Curvature

Let us consider a scalar field φ on the surface which is an isotropic function
of the curvature tensor C, i.e. it depends on the principal values c1, c2 of C
only. We use the notation φ̃(C) = φ̌(c1, c2).
The rate of φ can be written

φ̇ =
∂φ̃

∂C
: Ċ =

∂φ̌

∂c1
ċ1 +

∂φ̌

∂c2
ċ2 =

∂φ̌

∂c1
e1 · Ċ · e1 +

∂φ̌

∂c2
e2 · Ċ · e2

=
(
∂φ̌

∂c1
e1 ⊗ e1 +

∂φ̌

∂c2
e2 ⊗ e2

)
: Ċ (C.19)

and a comparison shows

∂φ̃

∂C
=

∂φ̌

∂c1
e1 ⊗ e1 +

∂φ̌

∂c2
e2 ⊗ e2 (C.20)

The symbols (̃) and (̌) are henceforth omitted. The symmetric tensor

D ≡ − ∂φ

∂C
(C.21)

is a mapping of T into itself. It has the same principal axes as C and hence
commutes with C, i.e., D · C = C · D is a symmetric tensor. So — with
equations (B.26) and (B.17)—

∂φ

∂C
: Ċ = −D : Ċ = − (D · 1T ) : Ċ = −D :

(
Ċ · 1T

)

= −D : (−C · L− ṅ⊗∇T )

= (C ·D) : (v ⊗∇T ) + D : (ṅ⊗∇T ) (C.22)

C.4 Some Differential Identities

We want to calculate the tangential derivatives of some tensors which are
mappings of T into itself. Since these tensors act on different spaces T at
neighbouring points, it is necessary, to consider them as (non-invertible) map-
pings of the three-dimensional observer space V into itself.

First we obtain the tangential divergence of the tangential unit tensor
by

1́T ·∇T = (1−n⊗n) ·∇T = −n (ń ·∇T ) = −n tr (ń⊗∇T ) = trC n (C.23)

We infer from (C.2)

∇T = 1T · ∇ (C.24)
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(note that here 1T must not be differentiated !). The gradient of C along the
surface is therefore given by

C⊗∇T = −∇⊗∇ ź ⊗ 1T · ∇ = −∇⊗∇⊗ 1T · ∇ ź (C.25)

and hence we get the important result that the third-order tensor

1T · Ć · 1T ⊗∇T = −1T · ∇ ⊗ 1T · ∇ ⊗ 1T · ∇ ź (C.26)

is obviously totally symmetric.
Another useful identity is obtained as follows. First we analyze

∂

∂z
∇⊗∇z =

∂

∂z
∇⊗ n = (n · ∇)∇⊗ ń = ∇⊗ (n · ∇) ń

= ∇⊗ ´(n · ∇)n− (∇⊗ ń) · (∇⊗ ń) = ∇⊗ ∂n
∂z

−C ·C = −C2 (C.27)

the trace of which yields

∂

∂z
∇ · ∇z = −C : C (C.28)

Now we are able to prove — note (C.2), (C.3), (C.10), (C.23) —
(
C− trC1T

) · ∇T = C · ∇T −
(
trC

)∇T − trC
(
1́T · ∇T

)

= −(∇⊗∇z) ·
(
∇− n

∂

∂z

)
+ (∇ · ∇z)

(
∇− n

∂

∂z

)
− (

trC
)2

n

= −∇(∇ · ∇z) + (∇ · ∇z)∇+
∂

∂z

(∇⊗∇z) · n− ∂

∂z

(∇ · ∇z)n− (
trC

)2
n

=
(
C : C− (

trC
)2

)
n = −2 detC n (C.29)

The first two of the underlined terms cancel each other while the third van-
ishes due to (C.27).

D Description of a Thick Layer

If the region on both sides of a surface, characterized by −h/2 ≤ z ≤ h/2
is filled with matter, then we speak of a layer with thickness h and call the
surface under discussion the middle surface of the layer.

For convenience we choose a plane reference placement of the middle
surface and denote its unit normal by n0. A point with the actual position
vector — cf. (B.31) —

xz = x + z n(x) (D.1)
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is then given the reference placement

xz 0 = x0 + z n0 (D.2)

A material line element connecting points with equal values of z satisfies —
note the fact that n0 does not depend on x0 and (B.4), (B.6), (B.12) —

dxz 0 = dx0 (D.3)

dxz = dx + z dn =
(
1T − zC

) · dx =
(
1T − zC

) · F · dx0

=
(
1T − zC

) · F · dxz 0 ≡ Fz · dxz 0 (D.4)

Thus we obtain the relation between the transplacement F of line elements
of the tangential plane of the middle surface and the transplacement of line
elements in a parallel plane.

Fz =
(
1T − zC

) · F (D.5)

Now let dx1 = ds1e1 and dx2 = ds2e2 be two orthogonal line elements of
the tangential plane of the middle surface, which span an area dA = ds1ds2.
If e1 and e2 are chosen as principal directions of the tensor C, then the
corresponding line elements in a parallel plane become
(
1T −zC

) ·dx1 = ds1(1−zc1) e1 ,
(
1T −zC

) ·dx2 = ds2(1−zc2) e2 (D.6)

and they span the area

dAz = (1− zc1)(1− zc2) ds1ds2 = (1− zc1)(1− zc2) dA

=
(
1− (c1 + c2) z + c1c2 z

2
)
dA =

(
1− trC z + detC z2

)
dA (D.7)

On the boundary surfaces we get

dA+ = dAz(z = h/2) =
(

1− trC
h

2
+ detC

h2

4

)
dA (D.8)

dA− = dAz(z = −h/2) =
(

1 + trC
h

2
+ detC

h2

4

)
dA (D.9)

The volumes between the middle surface and each of the boundary surfaces
amount to

dV± = ±
∫ ±h/2

z=0

dAz(z) dz = υ±dA with υ± =
h

2
∓ trC

h2

8
+ detC

h3

24
(D.10)

and hence the volume between the two boundary surfaces to

dV = dV+ + dV− =
(
h+ detC

h3

12

)
dA (D.11)
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E The Divergence Theorem of a Curved Sur-
face

The integral theorem of Stokes is known from three-dimensional vector anal-
ysis ∫

A

n · (∇×w) dA =
∮
dx ·w (E.1)

It allows us to transform an integral over a curved surface into a line integral
along the boundary curves of the surface. Noting equation (C.2) and the
identity n× n = 0 we find

n · (∇×w) = (n×∇) · ẃ = (n×∇T ) · ẃ = n · (∇T ×w) (E.2)

so that only tangential derivatives enter the surface integral. In order to apply
the Stokes theorem, it is therefore sufficient that the vector field w is defined
on the surface only and not in the neighbouring space. We restrict our atten-
tion to the case where w is defined by means of a tangential vector field zT

(i.e., zT · n ≡ 0) according to

w = n× zT (E.3)

With the identity

∇T × (ń× źT ) = (∇T · źT ) ń− (∇T · ń) źT (E.4)

and the product rule, we find

n · (∇T ×w) = n · (∇T × (n× zT )
)

= n ·
(
(∇T · źT )n + zT · (∇T ⊗ ń)− (∇T · ń) zT − n · (∇T ⊗ źT )

)

= ∇T · zT (E.5)

(Note ∇T ⊗ ń · n = −C · n = 0, n · zT = 0 and n · ∇T = 0.) We put

dx = g ds and e = g × n (E.6)

so that the tangent vector g, the normal to the surface n and the external
normal e ∈ T of the boundary represent a natural orthonormal basis. Thus
we arrive at the divergence (or Gauss integral) theorem of the curved surface:

∫

A

∇T · zT dA =
∮

e · zT ds (E.7)

It has the same appearance as the corresponding theorem of the plane. This
is caused by the fact, that zT is a tangential vector field. If the vector field
had also a component in the direction of n, an additional term would be
present.
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F The Euler-Lagrangean Differential Equa-
tions of Our Variational Problem

That part of the extended energy which is related with the geometry of a
single cell of a structure can be written — cf. (2.38) —

Φ =
∫

ACk

φ dA− (
pOk − pe

)
VOCk −

(
pWk − pe

)
VWCk (F.1)

with the abbreviation

φ = w(c1, c2, µ) + pe

(
h+ detC

h3

12

)
− f µ (F.2)

Now let the amphiphilic film be deformed. During a time increment δt, the
material points of the middle surface undergo displacements δu = v δt and
the area of a surface element dA increases — note (B.30) — by an increment
δ(dA) = dA1T : (δu⊗∇T ). We use the abbreviation

D = − ∂φ

∂C
(F.3)

of (C.21) and further introduce

S = φ 1T + C ·D (F.4)

With the help of (C.22), we are able to determine the variation of the integral

δ

∫

ACk

φ dA =
∫

A

(
∂φ

∂C
: δC + φ

δ(dA)
dA

)
dA

=
∫

ACk

(
(C ·D) : (δu⊗∇T ) + D : (δn⊗∇T ) + φ1T : (δu⊗∇T )

)
dA

=
∫

ACk

(
S : (δu⊗∇T ) + D : (δn⊗∇T )

)
dA (F.5)

Application of the product rule gives

δ

∫

ACk

φ dA =
∫

ACk

(
S : (δu⊗∇T ) + D : (δn⊗∇T )

)
dA

=
∫

ACk

(
δú · S + δń ·D) · ∇T dA

=
∫

ACk

´(
δu · S + δn ·D) · ∇T dA−

∫

ACk

(
δu · Ś · ∇T + δn · D́ · ∇T

)
dA

(F.6)
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Now, the fields of the increments δu and δn are not independent but satisfy
the equation — note (B.23) —

0 = δn + n · (δu⊗∇T ) (F.7)

We multiply this side condition with a Lagrangean parameter qT , which is a
tangential vector field,

0 = δn · qT + n · δú⊗∇T · qT = δn · qT + δú · n⊗ qT · ∇T (F.8)

and obtain, with integration by parts,

0 =
∫

ACk

δn · qT dA+
∫

ACk

δú · n⊗ qT · ∇T dA

=
∫

ACk

δn · qT dA+
∫

ACk

´δu · n⊗ qT · ∇T dA−
∫

ACk

δu · ´n⊗ qT · ∇T dA

(F.9)

Adding this identity to (F.6), we arrive at

δ

∫

ACk

φ dA =
∫

ACk

´(
δu · (S + n⊗ qT

)
+ δn ·D

)
· ∇T dA

−
∫

ACk

(
δu · ´(

S + n⊗ qT

) · ∇T + δn · (D́ · ∇T − qT

))
dA

(F.10)

Now, δu ·n⊗qT = (δu ·n)qT ∈ T and also δu ·S ∈ T and δn ·D ∈ T , because
the (symmetric) tensors D and S are mappings of T into itself. Hence the
divergence theorem (E.7) can be applied to the underlined integral in the last
equation. We get the result

δ

∫

ACk

φ dA =
∮
δu · (S + n⊗ qT ) · e ds+

∮
δn ·D · e ds

−
∫

ACk

δu · ´(S + n⊗ qT ) · ∇T dA−
∫

ACk

δn · (D́ · ∇T − qT

)
dA

(F.11)

The variation of the oil and water volumes is determined as follows. If an
element dA+ of the oil-sided boundary surface of the film with unit normal
vector n undergoes a displacement δu+ then it diminishes the oil volume by
dA+n · δu+. Now that displacement is obtained from

δu+ = δu + δψ × n
h

2
(F.12)
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where δu is the displacement of the point on the middle surface and δψ the
vector of rotation of the tangential plane. Because of n× n = 0, we find

n · δu+ = n ·
(
δu + δψ × n

h

2

)
= n · δu (F.13)

Moreover, according to (D.8), we have

dA+ =
(

1− trC
h

2
+ detC

h2

4

)
dA (F.14)

Thus we arrive at

δVOCk = −
∫

ACk

n · δu
(

1− trC
h

2
+ detC

h2

4

)
dA (F.15)

and, analogously, to

δVWCk =
∫

ACk

n · δu
(

1 + trC
h

2
+ detC

h2

4

)
dA (F.16)

The variation of the last terms in (F.1) yields

−(
pOk − pe

)
δVOCk −

(
pWk − pe

)
δVWCk

=
∫

ACk

δu · n pe h trC dA−
∫

ACk

δu · n pn dA (F.17)

with the abbreviation

pn = pWk

(
1 + trC

h

2
+ detC

h2

4

)
− pOk

(
1− trC

h

2
+ detC

h2

4

)
(F.18)

Now we introduce the internal forces of the fluid film, which are detailed in
appendix G, namely the tensor of moments

M = − ∂w
∂C

(F.19)

and the tensor of membrane forces

T =
(
w − f µ

)
1T + C ·M (F.20)

while the Lagrangean multiplier qT may be called the operator of transverse
forces. With (C.17), we find

D = M + pe
h3

12
(
C− trC1T

)
(F.21)

while (C.8) allows S to be reduced to

S = T + peh1T (F.22)
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So we have, with (C.29) and (C.23),

D · ∇T = M · ∇T − pe
h3

6
detC n (F.23)

(the second term will not enter (F.11), since δn · n = 0) and

S · ∇T = T · ∇T + pe h trC n (F.24)

Now we sum the expressions of the type Φ of (F.1) over the cells of all
structures and postulate that their variation must vanish under any variation
δu and δn.

0 =
∑

k

nk

(∮
δu · (S + n⊗ qT ) · e ds+

∮
δn ·D · e ds

)

−
∑

k

nk

∫

ACk

δu ·
(

´(T + n⊗ qT ) · ∇T + pnn
)
dA

−
∑

k

nk

∫

ACk

δn ·
(
Ḿ · ∇T − qT

)
dA (F.25)

If the structures are closed and hence have no boundaries at all — an example
is given by spheres — or if the boundaries are fixed at the wall of the test-
tube so that δu = 0 and δn = 0 is valid, then the line integrals over the
boundaries yield no contribution. If, however, there are free boundaries, then
the natural boundary conditions

(S + n⊗ qT ) · e = 0 ⇐⇒ T · e = −pehe , qT · e = 0 (F.26)

M · e = −pe
h3

12
(
C · e− trCe

)
(F.27)

must be satisfied. Moreover, the vector field δu on the surface is arbitrary
while the vectors of the field δn lie in the local tangential plane, so that the
following Euler-Lagrangean differential equations must be valid(

T + n⊗ qT

) · ∇T + pnn = 0 (F.28)

1T ·
(
Ḿ · ∇T − qT

)
= 0 (F.29)

They are further discussed in appendix G.3.

G The Internal Forces of a Shell

G.1 General Considerations

Imagine that we cut out an arbitrary part of a material surface. If that surface
is an amphiphilic film, then the free energy of that part with area A is

F =
∫

A

w(c1, c2, µ) dA (G.1)
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and its variation is

δF =
∫

A

(
∂w

∂µ
δµ+

∂w

∂C
: δC + w

δ(dA)
dA

)
dA (G.2)

We restrict our attention to a purely elastic deformation from the relaxed
state (i.e. the state of minimal free energy) without any exchange of mass
with the environment. This means δ(µdA) = 0 or

− δµ

µ
=
δdA

dA
= 1T : (δu⊗∇T ) (G.3)

(Note that the reached state will not be a relaxed state unless δdA = 0 holds.)
We use the abbreviations

M = − ∂w

∂C
(G.4)

and

T =
(
w − µ

∂w

∂µ

)
1T + C ·M (G.5)

which coincide with (F.19), (F.20), since we have

∂w

∂µ
= f (G.6)

according to (2.41) in the relaxed state. With the way of reasoning that led
us from (F.5) to (F.11) we arrive at

δF =
∫

A

(
T : (δu⊗∇T ) + M : (δn⊗∇T )

)
dA

=
∮
δu · (T + n⊗ qT ) · e ds+

∮
δn ·M · e ds

−
∫

A

δu · ´(T + n⊗ qT ) · ∇T dA−
∫

A

δn · (Ḿ · ∇T − qT

)
dA

(G.7)

The first of these two representations reveals the variation of the free energy
to be equivalent to the virtual work of two kinds of internal forces: the first
contribution is the virtual work of the membrane forces T and the second one
is the virtual work of the moments M. The second representation, resulting
from the application of the divergence theorem, shows that there exists an
equivalence between the virtual work of internal and external forces. (This
equivalence is called the work theorem of statics.) An inspection reveals that
the external virtual work on the considered part of the material surface is
exerted by four external agents. Two of them act on the boundary and two
directly on the surface. That boundary is in general not a real boundary of
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the material surface but a virtual cut through the surface in the sense of
Euler. Therefore, the boundary forces and torques that we will identify have
the meaning of contact interactions between adjacent regions of our material
surface and actually represent internal forces and torques within the surface.

These are the four external agents:
1) If a point on the boundary undergoes a virtual displacement δu, then the
work of the boundary force (per unit length of the boundary) is

δu · (T + n⊗ qT ) · e (G.8)

and hence the boundary force (per unit length) is given by

f = (T + n⊗ qT ) · e = T · e + (qT · e)n (G.9)

It is composed of a membrane force T·e ∈ T , which in general has components
normal and parallel to the boundary, i.e., normal and shearing (or tangential)
forces in the tangential plane, and a shearing (or transverse) force (qT · e)n
perpendicular to the tangential plane, i.e., in the direction of n.

2) Defining the vector of virtual rotation δψ∈ T of the tangential plane
T by

δψ = n× δn (G.10)

we find

δn = δψ × n (G.11)

If the tangential plane at a point of the boundary undergoes a virtual rotation
δψ , then the work of the boundary torque (per unit length of the boundary)
is

δn ·M · e =
(
δψ × n

) ·M · e = δψ · (n×M · e)
(G.12)

and hence the boundary torque (per unit length) is given by

m = n×M · e (G.13)

In general, it has components parallel and normal to the boundary, i.e. bend-
ing and torsional moments.

3) If a point within the cut out part of our material surface undergoes a
virtual displacement δu, then the work of the distributed surface force (per
unit area of the surface) is

− δu · ´(T + n⊗ qT ) · ∇T (G.14)

and hence the surface force (per unit area) is

p = −(
T + n⊗ qT

) · ∇T (G.15)

Noting

n · T́ · ∇T = ´n ·T · ∇T −T : ń⊗∇T = T : C (G.16)
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and

´n⊗ qT · ∇T = n (∇T · q́T ) + ń⊗∇T · qT = n (∇T · q́T )−C · qT (G.17)

we can decompose the surface force into components tangential and normal
to the surface.

1T · p = pT = −1T · T́ · ∇T + C · qT (G.18)

n · p = pn = −T : C−∇T · qT (G.19)

4) If the tangential plane at a point within the cut out part of our material
surface undergoes a virtual rotation δψ , then the work of the distributed
surface torque (per unit area of the surface) is

− δn·(Ḿ·∇T−qT

)
= −(

δψ×n
)·(Ḿ·∇T−qT

)
= − δψ ·

(
n×(

Ḿ·∇T−qT

))

(G.20)
and hence the surface torque (per unit area) is

t = −n× (
Ḿ · ∇T − qT

)
(G.21)

which implies

1T · Ḿ · ∇T − qT = n× t (G.22)

Using the abbreviations (G.9), (G.13), (G.15), (G.21), we can give the exter-
nal virtual work the illuminating form

δF =
∮

(δu · f + δψ ·m) ds+
∫

A

(δu · p + δψ · t) dA (G.23)

The equations (G.18), (G.19), (G.22) are the local equilibrium conditions
of forces and moments of a curved surface structure. Structures of that kind
are called shells by the engineers and have been studied by them for a hundred
years ([1], [10]). But the solid elastic shells of the engineering applications
possess an energy density of the more general form w(C,F) instead of w(C, µ)
so that their membrane force T mainly depends on the surface strains.

G.2 Restrictions in the Case of a Fluid Film

In the case of a relaxed fluid film, the membrane force T has a special form
according to (G.5), (G.6). This allows us to prove an important theorem: The
surface torque and the tangential component pT of the surface force cannot
be prescribed independently of each other, but must satisfy the condition

pT + C · (n× t) ≡ 0 (G.24)
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In order to see this, we use (G.18) and (G.22) and find

pT + C · (n× t) = −1T · ´(
(w − fµ)1T + C ·M) · ∇T + C · 1T · Ḿ · ∇T

= −∇T (w − fµ)− (w − fµ)1T · 1́T · ∇T

−1T · Ć ·M · ∇T−C · Ḿ · ∇T + C · Ḿ · ∇T (G.25)

The last two underlined terms obviously cancel each other. The first under-
lined term is equal to zero according to (C.23). Now

∇T (w − fµ) =
∂w

∂C
:
(
Ć⊗∇T

)
+

(
∂w

∂µ
− f

)
∇Tµ (G.26)

But the underlined term vanishes according to (G.6). So (G.25) with (G.4)
reduces to

pT + C · (n× t) = M : Ć⊗∇T − 1T · Ć ·M · ∇T

= M : 1T · Ć · 1T ⊗∇T − 1T · Ć · 1T ⊗∇T : M (G.27)

The right-hand side expression is, indeed, equal to zero, since the third-order
tensor 1T · Ć · 1T ⊗∇T is totally symmetric according to (C.26).

We notice: While it is possible to apply arbitrary surface forces and
torques on solid elastic shells, this is by no means the case with relaxed fluid
films.

G.3 Simplification of the Euler-Lagrange Equations

The condition (G.24) causes no problem in our case, since it is trivially sat-
isfied. This is seen by a comparison of (G.15) with (F.28) — which implies
pT = 0 — and (G.21) with (F.29) — which implies t = 0. It shows that
the water and the oil on the two sides of the thick amphiphilic layer apply
neither a tangential surface force pT nor a surface torque t. There is only
a surface force normal to the middle surface of the film, the magnitude of
which is easily interpreted, since (F.18) with (D.8), (D.9) implies

pn dA = pWk dA− − pOk dA+ (G.28)

Equation (F.29) may be rearranged to read

qT = 1T · Ḿ · ∇T (G.29)

But this statement alone secures t = 0 according to (G.22) and hence pT = 0
according to (G.24). Therefore the equilibrium condition of the tangential
forces (G.18) is identically satisfied and need not be discussed separately in
the case of a relaxed fluid film. Only the one scalar condition of the equilib-
rium of the normal forces (G.19)

pn = −T : C−∇T · qT (G.30)

with pn according to (F.18) and qT according to (G.29) must be solved.
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H A Class of Bi-continuous Surfaces

H.1 A Substitute of Schwarz’s P surface

We want to construct a model of the bi-continuous phase, consisting of two
systems of intertwining tubes in the three directions of space. At the moment,
we restrict our attention to the isometric case, i.e. the volumes inside the
two systems of tubes, containing oil and water, respectively, are equal. Let
us consider a typical cell of this triply periodic structure (cf. fig. H.1). We
study the reference structure with characteristic length L = 1. (More general
structures may then be obtained by affine magnification.) The periodicity of
the (reference) structure in each of the three directions of space is 4L. The
side length of the cell is 2L. The contours of the cell are characterized by a
dashed line in the figure. The topology of the structure is best understood
by assuming provisionally, that the surface consists of plane square patches.
The cell contains six such patches. Two complementary systems of triply
orthogonal tubes can now be imagined. We obtain a smooth surface, if we
deform the square cross-sections of the tubes on the planes of symmetry into
circles. The patch which is marked by a bold boundary is then deformed into
a curved surface patch. It is this quadrilateral curved patch, from which the
whole surface structure can be built up by means of reflexions. The following
investigation is based on an analytic representation of this patch.

All vectors will be referred to the basis ex, ey, ez of the Cartesian co-
ordinate system so that we only write down the rows of their components.
The position vector x of the patch can be represented as a function of two
Gaussian parameters ξ and η.

x(ξ, η) =̂
(
x(ξ, η) y(ξ, η) z(ξ, η)

)
(H.1)

The tangent vectors are given by

gξ =
∂x
∂ξ

=̂
(
∂x

∂ξ

∂y

∂ξ

∂z

∂ξ

)
(H.2)

gη =
∂x
∂η

=̂
(
∂x

∂η

∂y

∂η

∂z

∂η

)
(H.3)

The parameter lines ξ = const and η = const form an oblique-angled pattern
on the surface, and the tangent vectors are neither normalized nor mutually
orthogonal. The cross product of the tangent vectors is normal to the surface
and normalization yields the unit normal vector of the surface.

n =
gξ × gη

|gξ × gη| (H.4)
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In order to study the curvatures, we first need the cotangent vectors,
defined by

gξ =
gη × n
|gξ × gη| (H.5)

gη =
n× gξ

|gξ × gη| (H.6)

and satisfying

gξ · gξ = 1 , gξ · gη = 0 , gη · gξ = 0 , gη · gη = 1 (H.7)

as well as the derivatives of n with respect to ξ and η:

n,ξ =
∂n
∂ξ

, n,η =
∂n
∂η

, (H.8)

The operator of tangential differentiation may be represented as

∇T = gξ ∂

∂ξ
+ gη ∂

∂η
=⇒ gξ · ∇T =

∂

∂ξ
, gη · ∇T =

∂

∂η
(H.9)

The mixed components of the tensor of curvature C are then given by —
note (B.13) —

cαβ = gα ·C · gβ = −gα · n⊗∇T · gβ = −gα · n,β α, β = ξ, η (H.10)

The invariants of the curvature are

trC = cξξ + cηη , detC = cξξ c
η
η − cξη c

η
ξ (H.11)

i.e., they are simply computed as the trace and the determinant of the matrix
of the mixed components (cαβ).

This rule, which is not valid in the case of purely co-variant or contra-variant
components, can be demonstrated as follows. According to (C.10) we have

2 detC =
(
trC

)2 −C : C =
(
trC

)2 − tr
(
C2

)

Now

C =

2∑
α=1

2∑
β=1

cα
βgα ⊗ gβ , C2 =

2∑
α=1

2∑
β=1

( 2∑
γ=1

cα
γ cγ

β

)
gα ⊗ gβ

and hence

trC =

2∑
α=1

2∑
β=1

cα
βgα · gβ =

2∑
α=1

cα
α , tr

(
C2

)
=

2∑
α=1

2∑
γ=1

cα
γ cγ

α

If the Cartesian components of the position vector, i.e. the functions(
x(ξ, η), y(ξ, η), z(ξ, η)

)
are given, then all the algebraic or differential com-

putations (H.2) to (H.6), (H.8) and (H.10) can be done with Cartesian com-
ponents.
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Now we need to specify our patch. To this purpose we choose four linearly
independent cubic splines

h0(u) ≡ 1− 3u2 + 2u3 , h1(u) ≡ 3u2 − 2u3

k0(u) ≡ u− 2u2 + u3 , k1(u) ≡ −u2 + u3 (H.12)

defined on u ∈ [0, 1] and represent the components of the position vector as
sums of products of these splines, valid on a domain defined by ξ ∈ [0, 1],
η ∈ [0, 1]. Thus we introduce 3×4×4 = 48 degrees of freedom, which may be
interpreted as the values of the components, of their two partial derivatives
and of their mixed second derivative at the four corners of the patch. Let w
denote any one of the components x, y or z. Then we put

w(ξ, η) ≡
w00 h0(ξ)h0(η) + w10 h1(ξ)h0(η) + w01 h0(ξ)h1(η) + w11 h1(ξ)h1(η)

+wξ 00 k0(ξ)h0(η) + wξ 10 k1(ξ)h0(η) + wξ 01 k0(ξ)h1(η) + wξ 11 k1(ξ)h1(η)

+wη 00 h0(ξ) k0(η) + wη 10 h1(ξ) k0(η) + wη 01 h0(ξ) k1(η) + wη 11 h1(ξ) k1(η)

+wξη 00 k0(ξ) k0(η) + wξη 10 k1(ξ) k0(η) + wξη 01 k0(ξ) k1(η) + wξη 11 k1(ξ) k1(η)
(H.13)

Since we are considering the isometric case, our patch is antimetric with
respect to the straight line which connects x=̂( 0 0 0 ) with x=̂( 1 1 0 ). There-
fore we have to impose the restrictions

y(ξ, η) = x(η, ξ) , z(ξ, η) = −z(η, ξ) (H.14)

which yield

y00 = x00 , y10 = x01 , y01 = x10 , y11 = x11 (H.15)

yξ 00 = xη 00 , yη 00 = xξ 00 , yξ 01 = xη 10 , yη 01 = xξ 10 (H.16)

yξ 10 = xη 01 , yη 10 = xξ 01 , yξ 11 = xη 11 , yη 11 = xξ 11 (H.17)

yξη 00 = xξη 00 , yξη 01 = xξη 10 , yξη 10 = xξη 01 , yξη 11 = xξη 11 (H.18)

z00 = 0 , z01 = −z10 , z11 = 0 (H.19)

zη 00 = −zξ 00 , zη 10 = −zξ 01 , zη 01 = −zξ 10 , zη 11 = −zξ 11 (H.20)

zξη 00 = 0 , zξη 01 = −zξη 10 , zξη 11 = 0 (H.21)
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and reduce the number of degrees of freedom to 22. This number may be fur-
ther diminished due to the fact, that the quadrilateral patch under consider-
ation is bounded by four planes of symmetry of the triply periodic structure.
Since we take care that the normal of the patch at the boundaries lies within
the corresponding plane of symmetry, the resulting periodic structure is C2

continuous.
The points of the boundary ξ = 0 lie on the plane of symmetry x = 0.

Moreover, we postulate that the tangent vector gξ be normal to that plane.
We obtain

x(0, η) = 0 : x00 = 0 , x01 = 0 , xη 00 = 0 , xη 01 = 0 (H.22)

ey · gξ(0, η) = 0 : yξ 00 = 0 , yξ 01 = 0 , yξη 00 = 0 , yξη 01 = 0 (H.23)

ez · gξ(0, η) = 0 : zξ 00 = 0 , zξ 01 = 0 , zξη 00 = 0 , zξη 01 = 0 (H.24)

A similar discussion of the boundary η = 0 yields no additional restric-
tions because of the identities (H.15) to (H.21).

The points of the boundary ξ = 1 lie on the plane of symmetry x = 1−z.
x(1, η) = 1− z(1, η) :

x10 = 1− z10 , x11 = 1− z11 , xη 10 = −zη 10 , xη 11 = −zη 11 (H.25)

The points of the boundary η = 1 lie on the plane of symmetry y = 1+z.
This is automatically achieved by (H.15) to (H.21).

We have adopted the postulate that the tangent vectors gξ and gη be
mutually orthogonal on the lines ξ = 0 and η = 0. We cannot impose the
same restriction to the lines ξ = 1 or η = 1, since this would imply also
the orthogonality at the corner ξ = 1, η = 1. But there are six quadrilateral
patches adjacent to this corner, so that the angle of each of them must amount
to 60◦.

What we can do, is observe that the vector vξ = ex+ez , which is normal
to the plane of symmetry x = 1− z at ξ = 1, must lie in the tangential plane
of the surface, and, therefore, the following linear relation between this vector
and the tangent vectors must hold.

gξ(1, η) = λ(η)vξ + µ(η)gη(1, η) (H.26)

The unknown function λ(η) is eliminated if we multiply this vector equation
with two vectors that are orthogonal to vξ. We obtain

ey ·
(
gξ(1, η)− µ(η)gη(1, η)

)
= 0 (H.27)

(
ex − ez

) · (gξ(1, η)− µ(η)gη(1, η)
)

= 0 (H.28)

First we consider the corner point with η = 0. The condition
y(ξ, 0) = 0, which is already fulfilled, implies ∂y(ξ, 0)/∂ξ = 0 and hence

106



especially ∂y/∂ξ(1, 0) = ey · gξ(1, 0) = 0. So the choice µ(0) = 0 satisfies
(H.27), while (H.28) then implies

zξ 10 = xξ 10 (H.29)

In a similar manner, we observe that the vector vη = ey − ez , which is
normal to the plane of symmetry y = 1 + z, must lie in the tangential plane
of the surface at η = 1.

Now, the normal vector at the boundary ξ = 1 is orthogonal to vξ and
the normal vector at the boundary η = 1 is orthogonal to vη. Hence, the
normal vector at the corner ξ = 1, η = 1 has to be orthogonal to both of
these vectors and must therefore point into the direction of

vn = vξ × vη =
(
ex + ez

)× (
ey − ez

)
= −ex + ey + ez (H.30)

Thus the condition

0 = vn ·gξ(1, 1) =
(− ex + ey + ez

) ·gξ(1, 1) = −xξ 11 + yξ 11 + zξ 11 (H.31)

is valid at the corner. Together with (H.17), (H.25), (H.20), it implies

zξ 11 =
1
2
xξ 11 (H.32)

Noting (H.17), (H.20), (H.25), (H.31), (H.32) we find that (H.27) and
(H.28) are satisfied at the corner with η = 1 if we choose µ(1) = 1/2. The
simplest functional form which fits this condition and µ(0) = 0 is

µ(η) =
1
2
η (H.33)

If we adopt it, we can satisfy (H.27) and (H.28) for each value of η by putting

z10 =
1
2
− 1

6
xξ 01 (H.34)

xξη 01 =
1
2
xξ 01 (H.35)

xξη 11 =
5
2
xξ 11 + xξ 01 − 3 (H.36)

After all, only four of the original 48 degrees of freedom have remained over.
The numerical values of them are chosen in such a way that the resulting
variation of the mean curvature over the surface patch is as small as possible.
After some trials we arrive at

xξ 00 = 0.867 , xξ 11 = 0.857 , xξ 10 = 0.5 , xξ 01 = 1.2 (H.37)

The curvature of the boundaries η = 0 and ξ = 0 is almost constant. Hence,
the curves are almost circles with radius 1 as mentioned earlier. The principal
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curvatures at the corner ξ = 1, η = 1 are equal. This follows from the fact
that 6 patches meet at that corner so that the curvature tensor must be
isotropic. Their value is, of course, 0 in this isometric case. The maximum
magnitude of the mean curvature H is about 0.012, i.e. 1.2% of the maximum
magnitude of the principal curvatures. Thus, our surface is nearly a minimal
surface, i.e. a surface with H = 0, and hence a useful numerical substitute of
Schwarz’s P surface ([13]).

H.2 Definition of a Class of Surfaces

By displacing each point x(ξ, η) of the surface of the preceding section by a
distance ζ in the direction of the local unit normal vector n(ξ, η) into a new
position

xζ(ξ, η, ζ) = x(ξ, η) + ζn(ξ, η) (H.38)

we generate another surface with the same local unit normal vector. Letting
ζ be any value of, say, the interval (-0.8, 0.8) we obtain a class of surfaces,
depending on the parameter ζ. The original surface is characterized by ζ = 0
and describes the isometric case.

The following reasonings are similar to those of appendix D, but in a
totally different context. We denote the curvature tensors of the surface with
ζ = 0 and of the surface with ζ 6= 0 by C̄ and Ĉ, respectively. If ξ and η are
varied by dξ and dη, then the resulting changes of the position vectors x and
xζ are connected by — note (B.12) —

dxζ = dx + ζdn = dx− ζC̄ · dx =
(
1T − ζC̄

) · dx (H.39)

The connexion of the curvature tensors can be inferred from

dn = −C̄ · dx = −Ĉ · dxζ = −Ĉ · (1T − ζC̄
) · dx (H.40)

whence follows

Ĉ = C̄ · (1T − ζC̄
)−1 (H.41)

The principal values are therefore connected by

ĉ1 =
c̄1

1− ζc̄1
, ĉ2 =

c̄2
1− ζc̄2

(H.42)

and the invariants — cf. (C.12) — by

Ĥ =
1
2
(ĉ1 + ĉ2) =

H̄ − ζK̄

1− 2ζH̄ + ζ2K̄
, K̂ = ĉ1ĉ2 =

K̄

1− 2ζH̄ + ζ2K̄
(H.43)

The surface elements are related by

dÂ =
(
1− 2ζH̄ + ζ2K̄

)
dĀ (H.44)

108



and the volume between these elements is

dV̂ζ =
(
ζ − ζ2H̄ +

ζ3

3
K̄

)
dĀ (H.45)

— cf. (D.7) and (D.9). If we make use of the fact, that the mean curvature of
our original surface is nearly zero and hence put H̄ = 0, we find the simpler
formulae

Ĥ =
−ζK̄

1 + ζ2K̄
, K̂ =

K̄

1 + ζ2K̄
(H.46)

dÂ =
(
1 + ζ2K̄

)
dĀ (H.47)

V̂ζ =
∫

Ā

(
ζ +

ζ3

3
K̄

)
dĀ = ζ

∫

Ā

dĀ+
ζ3

3

∫

Ā

K̄ dĀ (H.48)

The equations (H.46) have the interesting consequence

− ζ =
Ĥ

K̂
=

1
2

(
1
ĉ1

+
1
ĉ2

)
(H.49)

The ratio of Ĥ and K̂ possesses the constant value −ζ on the whole surface.
While the arithmetic mean Ĥ of the principal curvatures is only constant
in the special case ζ = 0, the harmonic mean is constant for each ζ. Now,
we remember our convention that the normal vector tends to the oil side
of the surface. This indicates that the displacement of the points of our
original surface in the direction of positive values of ζ diminishes the total
oil-sided volume V̂O of the cell, which originally is half of the cell volume
V̄ = (2L)3 = 8. Since there are six deforming patches, we get

V̂O

V̄
=

4− 6 V̂ζ

8
=

1
2
− 3

4
V̂ζ (H.50)

and hence

V̂W

V̄
=

1
2

+
3
4
V̂ζ (H.51)

Remark: A similar class of bi-continuous surfaces was studied in [7]. While
the surface with ζ = 0 was practically identical to the one defined above, the
surfaces with ζ 6= 0 were constructed on the basis of (H.13) instead of (H.38).

H.3 Numerical Integration on the Surfaces

The area element of the original surface can be written

dĀ =
∣∣∣∣
∂x
∂ξ

dξ × ∂x
∂η

dη

∣∣∣∣ =
∣∣gξ × gη

∣∣dξdη (H.52)
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and the integration of some function Φ over a surface patch is performed as
follows

∫

Â

Φ dÂ =
∫

Ā

Φ
(
1 + ζ2K̄

)
dĀ

=
∫ 1

ξ=0

∫ 1

η=0

Φ(ξ, η)
(
1 + ζ2K̄(ξ, η)

)∣∣gξ × gη

∣∣(ξ, η) dξdη (H.53)

This definite integral can easily be evaluated numerically.
Results for special cases are

Ā =
∫

Ā

dĀ = 0.7816 ,
∫

Ā

K̄ dĀ = −π
6

= −0.5236 (H.54)

and hence

Â = Ā− π

6
ζ2 = 0.7816− 0.5236 ζ2 (H.55)

and — with (H.50), (H.48) —

V̂O

V̄
=

1
2
− 3

4
Ā ζ +

π

24
ζ3 = 0.5− 0.5862 ζ + 0.1309 ζ3 (H.56)

The last two formulae show the dependence of the patch area and the oil-
sided volume on the parameter ζ. The value −π/6 in (H.54) can be obtained
without integration from the Gauss-Bonnet theorem, since it represents the
excess angle of the patch (sum of the four angles minus sum of the four angles
of a quadrangle in a plane): 90◦ + 90◦ + 90◦ + 60◦ − 360◦ = −30◦.

I Inelastic Behaviour of a Thick Layer

I.1 Decomposition of the Transplacement

In chapter 3, the elastic and inelastic behaviour of a thick layer was discussed
under the special assumption, that the principal axes of the stretching of the
middle surface and of the bending of the layer coincide. In the following, we
study the general case, but must use more advanced mathematical methods.
It turns out that the co-axial case is the most interesting one if we restrict
our attention to the relaxed state. But that is actually the state which we
are in fact interested in.

The standard method of treating inelastic behavior is the multiplica-
tive decomposition of the transplacement into an elastic and an inelastic
part. (For a rigorous basis of this method cf. Krawietz [5]). We imagine
the transplacement F of the line elements of the middle surface (which is a
mapping from T0 into T ) as the succession of a transplacement Fb (from T0
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into T0) into the basic placement (often called intermediate placement) and
an elastic transplacement Fe (from T0 into T ).

F = Fe · Fb (I.1)

The elastic transplacement is defined to be responsible for the stressing. That
means: In the basic placement, before the elastic transplacement is performed,
i.e. if Fe = 1T0 and F = Fb, the middle surface is free of stress.
Another possible decomposition is the following one

F = F∗e(z) · Fzb(z) (I.2)

It is based on the definition that the layer at z is free of stress if F∗e(z) = 1T0

and F = Fzb(z). Thus obviously

F∗e(z = 0) = Fe , Fzb(z = 0) = Fb , (I.3)

We set

F∗e(z) = Fe · Fp(z) (I.4)

Then Fp(z), called the predeformation, describes the elastic deformation of
the layer at z which is present while the middle surface is not yet elastically
stretched. These predeformations cause the prestress of the different layers.
It seems reasonable to assume that the predeformation is isotropic, i.e. of the
form

Fp(z) = λp(z)1T0 with λp(0) = 1 (I.5)

We may additionally introduce the unloading deformation by

Fu(z) = F−1
p (z) = λ−1

p (z)1T0 (I.6)

Thus, from (I.1), (I.2), (I.4), we find

Fzb(z) = Fu(z) · Fb (I.7)

So the transplacement of the layer at z into its stress free placement is seen
to be the basic transplacement Fb of the middle layer (at z = 0) — which
makes this layer free of stress —, followed by the unloading transplacement
Fu(z) — which stresses the middle layer and makes the layer at z free of
stress.

After all, we need the multiplicative decomposition of the transplacement
of the line elements of a layer at z in the form

Fz(z) = Fze(z) · Fzb(z) (I.8)

Noting (D.5), (I.2), (I.4), we get

Fz(z) =
(
1T − zC

) · F =
(
1T − zC

) · Fe · Fp(z) · Fzb(z) (I.9)
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and infer

Fze(z) =
(
1T − zC

) · Fe · Fp(z) (I.10)

We make use of the polar decomposition theorem

Fe = Re ·Ue (I.11)

saying that the elastic transplacement of the line elements of the middle
surface may be regarded as the succession of a stretch tensor Ue, which is a
symmetric and positive definite mapping of T0 into T0 and hence possesses a
spectral representation

Ue = λe1 a1 ⊗ a1 + λe2 a2 ⊗ a2 (I.12)

and a tensor of rotation Re which is a metric-preserving mapping of T0 into T .
We denote the principal vectors of the tensor of curvature C by e1, e2 ∈ T

and define two orthogonal vectors d1,d2 ∈ T0 by

d1 = RT
e · e1 , d2 = RT

e · e2 (I.13)

whence follows the representation

Re = e1 ⊗ d1 + e2 ⊗ d2 (I.14)

We obtain with (C.4), (C.5)

1T − zC = (1− c1z) e1 ⊗ e1 + (1− c2z) e2 ⊗ e2

= Re ·
(
(1− c1z)d1 ⊗ d1 + (1− c2z)d2 ⊗ d2

)
·RT

e ≡ Re ·Uc(z) ·RT
e

(I.15)

Finally we arrive at the decomposition — note (I.5), (I.10), (I.11), (I.15) —

Fze(z) = Re ·Uc(z) ·Ue · λp(z)1T0 (I.16)

The elastic deformation of the layer at z is therefore seen to be the succes-
sion of an isotropic predeformation of this layer, the elastic stretching of the
middle layer, a stretching due to the bending of the thick layer, and a rigid
body rotation from the plane T0 of the reference placement into the actual
tangential plane T .

It will also be useful to introduce the polar decomposition of this elastic
deformation

Fze(z) = Rze(z) ·Uze(z) (I.17)

where the stretch tensor Uze(z) is a symmetric and positive definite mapping
of T0 into T0 and Rze(z) a rotation from T0 into T .

With (I.6), (I.7), (I.8) and (I.17), we may represent the transplacement
of the layer z as

Fz(z) = Rze(z) ·Uze(z) · F−1
p (z) · Fb (I.18)
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We further define, in analogy to (B.17) the rate of deformation tensor
of the layer z and find — note that the predeformation Fp does not change
with time —

Lz ≡ Ḟz · F−1
z = Ṙze ·RT

ze + Rze · U̇ze ·U−1
ze ·RT

ze

+Rze ·Uze · F−1
p · Ḟb · F−1

b · Fp ·U−1
ze ·RT

ze (I.19)

I.2 Elastic Strains and Invariants

The rotation in (I.17) is eliminated by introducing the right Cauchy-Green
tensor, which is the square of the stretch tensor and hence also symmetric and
positive definite and of which we will also need the spectral representation

Cze(z) ≡ FT
ze(z) · Fze(z) = λ2

p(z) Ue ·U2
c(z) ·Ue

= U2
ze(z) = λ2

ze1(z) b1(z)⊗ b1(z) + λ2
ze2(z) b2(z)⊗ b2(z) (I.20)

The logarithmic principal strains

ε1(z) = lnλze1(z) , ε2(z) = lnλze2(z) (I.21)

are the proper numbers of the logarithmic elastic strain tensor of the layer
at z

H(z) ≡ lnUze(z) =
1
2

lnCze(z) = ε1(z) b1(z)⊗ b1(z) + ε2(z) b2(z)⊗ b2(z)

(I.22)
We further introduce the logarithmic prestrain

εp(z) = lnλp(z) with εp(0) = 0 (I.23)

and the logarithmic elastic principal strains of the middle surface

εe1 = lnλe1 , εe2 = lnλe2 (I.24)

as well as their sum and difference

εes = εe1 + εe2 , εed = εe1 − εe2 (I.25)

This allows the representation — cf. (I.12) —

Ue = exp(εes/2)
(

exp(εed/2) a1 ⊗ a1 + exp(−εed/2) a2 ⊗ a2

)
(I.26)

Next we want to determine some invariants of the tensor H. To this purpose,
we first introduce the angle α between the principal axes of Ue and Uc by
putting

d1 = cosα a1 + sinα a2 d2 = − sinα a1 + cosα a2 (I.27)
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Then we evaluate the tensor Cze(z) by means of (I.15), (I.20), (I.21), (I.23),
(I.26) and obtain

Cze(z) = exp
(
2ε1(z)

)
b1(z)⊗ b1(z) + exp

(
2ε2(z)

)
b2(z)⊗ b2(z)

= exp
(
2εp(z)

)
exp

(
εes

) (
1− c1z

) (
1− c2z

)
B(z) (I.28)

with

B(z) ≡ β1(z)b1(z)⊗ b1(z) + β2(z)b2(z)⊗ b2(z)

=
1− c1z

1− c2z

(
exp(εed) cos2 α a1 ⊗ a1

+cosα sinα
(
a1 ⊗ a2 + a2 ⊗ a1

)
+ exp(−εed) sin2 α a2 ⊗ a2

)

+
1− c2z

1− c1z

(
exp(εed) sin2 α a1 ⊗ a1

− cosα sinα
(
a1 ⊗ a2 + a2 ⊗ a1

)
+ exp(−εed) cos2 α a2 ⊗ a2

)

(I.29)

The classical invariants of this auxiliary tensor are found to be

detB(z) = 1 (I.30)

and

trB(z) =
1− c1z

1− c2z

(
exp(εed) cos2 α+ exp(−εed) sin2 α

)

+
1− c2z

1− c1z

(
exp(εed) sin2 α+ exp(−εed) cos2 α

)

=
1− c1z

1− c2z
exp(εed) +

1− c2z

1− c1z
exp(−εed)

+
(1− c2z

1− c1z
− 1− c1z

1− c2z

)(
exp(εed)− exp(−εed)

)
sin2 α

(I.31)

The proper numbers of (I.28) are

exp
(
2εj(z)

)
= exp

(
2εp(z)

)
exp

(
εes

) (
1− c1z

)(
1− c2z

)
βj(z) , j = 1, 2

(I.32)
whence follows

εj(z) = εp(z)+
1
2
εes +

1
2

ln
(
1− c1z

)
+

1
2

ln
(
1− c2z

)
+

1
2

lnβj(z) , j = 1, 2

(I.33)
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We are now interested in the following invariants of the Tensor H

I1(z) = ε1(z) + ε2(z) , I2(z) =
(
ε1(z)− ε2(z)

)2 (I.34)

Because of
1
2

(
lnβ1(z) + lnβ2(z)

)
=

1
2

ln
(
β1(z)β2(z)

)
=

1
2

ln detB(z) = 0 (I.35)

we easily get the first invariant

I1(z) = 2εp(z) + εes + ln(1− c1 z) + ln(1− c2 z) (I.36)

The ansatz

β1(z) = exp(q(z)) , β2(z) = exp(−q(z)) (I.37)

satisfies (I.35) and leads to

trB(z) = β1(z) + β2(z) = 2 cosh q(z) (I.38)

We assume

q(z) ≥ 0 ⇐⇒ β1(z) ≥ β2(z) (I.39)

(This implies a special numbering of the principal values of B.) So we obtain

q(z) = arccosh
trB(z)

2
(I.40)

and arrive at the second invariant

I2(z) =
(

1
2
(
lnβ1(z)− lnβ2(z)

))2

= q(z)2 =
(

arccosh
trB(z)

2

)2

(I.41)

with trB(z) according to (I.31).
The derivative of this invariant with respect to some parameter p is

obtained as
∂I2(z)
∂p

= Id(z)
∂trB(z)
∂p

(I.42)

with the abbreviation

Id(z) =
dI2(z)
dtrB(z)

=

√
I2(z)

sinh
√
I2(z)

(I.43)

Finally we provide a representation of U̇ze(z) ·U−1
ze (z) for later use. We get

from (I.20), (I.21)

Uze = exp
(
ε1

)
b1 ⊗ b1 + exp

(
ε2

)
b2 ⊗ b2 (I.44)

(The dependence on z will not be mentioned explicitly.) During an increase
of elastic deformation, not only the principal strains ε1, ε2 change but also
the principal directions may rotate according to

ḃ1 = ω b2 , ḃ2 = −ω b1 (I.45)
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Therefore

U̇ze ·U−1
ze =

(
ε̇1 exp

(
ε1

)
b1 ⊗ b1 + ε̇2 exp

(
ε2

)
b2 ⊗ b2

+exp
(
ε1

)
(ḃ1 ⊗ b1 + b1 ⊗ ḃ1) + exp

(
ε2

)
(ḃ2 ⊗ b2 + b2 ⊗ ḃ2)

)
×

(
exp

(− ε1
)
b1 ⊗ b1 + exp

(− ε2
)
b2 ⊗ b2

)

= ε̇1 b1 ⊗ b1 + ε̇2 b2 ⊗ b2

+ω
((

exp
(
ε1 − ε2

)− 1
)
b1 ⊗ b2 +

(
1− exp

(
ε2 − ε1

))
b2 ⊗ b1

)
(I.46)

An important consequence of this formula is — note (I.34) —

1T0 : U̇ze(z) ·U−1
ze (z) = ε̇1(z) + ε̇2(z) = İ1(z) (I.47)

I.3 Mass

Computing the determinant of (I.16), (I.17), we find

detFze(z) = detUze(z) = detUc(z) detUe λ
2
p(z) (I.48)

While the elastic stretch of the layer at z from its stress free placement is
built up from a prestretch, the stretch of the middle surface and the stretch
of bending, the sequence of the corresponding area elements is dAzb, dAb,
dA, and dAz. Their ratios are obtained from — note (I.23), (I.26), (I.15) (see
also (D.7)), and (I.44) with (I.34) —

dAb

dAzb
= λ2

p(z) = exp
(
2εp(z)

)
(I.49)

dA

dAb
= detUe = exp

(
εes

)
(I.50)

dAz

dA
= detUc(z) = (1− c1 z)(1− c2 z) (I.51)

dAz

dAzb
= detUze(z) = exp

(
ε1(z) + ε2(z)

)
= exp

(
I1(z)

)
(I.52)

The last equation gives an interpretation of I1 as a measure of the elastic
change of area of the layer.
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We assume for the sake of simplicity that neither the thickness dz of the
layer at z nor the total thickness h of the thick layer undergo any change
during a deformation process. Then equation (3.19)

dm =
∫ h/2

z=−h/2

%(z) dAz(z) dz =
∫ h/2

z=−h/2

(1− c1z)(1− c2z) %(z) dz dA

≡ µdA = µ exp
(
εes

)
dAb = µb dAb (I.53)

is seen to remain valid even if the axes of the stretch of the middle surface
and of the curvature do not coincide. The same is true with its consequence

µ̇

µ
= − ε̇es (I.54)

which results from the postulate that µb must be constant with time.
The trace of (I.19) yields — note (B.30) and (I.47)—

˙dAz

dAz
= tr Lz = tr

(
U̇ze ·U−1

ze

)
+ tr

(
Ḟb · F−1

b

)
= İ1(z) + tr

(
Ḟb · F−1

b

)

(I.55)
and restricting our attention to the middle surface z = 0, we find, with (I.36),

˙dA
dA

− tr
(
Ḟb · F−1

b

)
= İ1(z = 0) = ε̇es = − µ̇

µ
(I.56)

The mass which is supplied from the environment per unit time and unit area
of the actual middle surface shall be denoted by µ̃, and the rate of mass can
be written

˙dm = µ̃ dA =
(
µdA

)• =

(
µ̇

µ
+

˙dA
dA

)
µdA = tr

(
Ḟb · F−1

b

)
µdA

=
(
µbdAb

)• = µb
˙dAb (I.57)

from which we infer

µ̃

µ
=

˙dAb

dAb
= tr

(
Ḟb · F−1

b

)
(I.58)

I.4 Power and Energy

We describe the state of plane stress in the layer at z by a tensor σ(z), which
is a mapping of T into T . Now b1(z), b2(z) form an orthonormal basis of T0

and hence Rze(z)·b1(z), Rze(z)·b2(z) an orthonormal basis of T . The stress
tensor may hence be written — the dependence on z is not made explicit —

σ = Rze ·
(
σ11 b1⊗b1 +σ12b1⊗b2 +σ21b2⊗b1 +σ22 b2⊗b2

) ·RT
ze (I.59)
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With (I.19), the stress power in the layer at z referred to the actual unit
volume can be represented as

Pz = σ : Lz = σ :
(
Ṙze ·RT

ze + Rze · U̇ze ·U−1
ze ·RT

ze

+Rze ·Uze · F−1
p · Ḟb · F−1

b · Fp ·U−1
ze ·RT

ze

)
(I.60)

In case of a pure rigid body rotation, we have U̇ze = 0 and Ḟb = 0 while
Ṙze · RT

ze is an arbitrary skew tensor which maps T into T . The condition
that the internal forces of a body do no work during a rigid body motion is
satisfied, if and only if the stress tensor σ is symmetric, i.e. σ12 = σ21. In
case of a sudden and hence purely elastic deformation, we have with (I.46)

Pz = RT
ze · σ ·Rze : U̇ze ·U−1

ze

= σ11 ε̇1 + σ22 ε̇2 + σ12 ω
(

exp(ε1 − ε2)− exp(ε2 − ε1)
)

(I.61)

Moreover, the value of dAz0 is not changed and (I.55) reduces to

˙dAz

dAz
= İ1 = ε̇1 + ε̇2 (I.62)

Then all of the work of the stresses is fully stored and gives rise to an increase
of the strain energy. This strain energy — referred to the actual unit volume
— depends on the elastic deformation only through its invariants, because
the elastic behaviour is assumed to be isotropic within the layer. Therefore
we write wz(I1, I2) or wz(ε1, ε2) and find

Pz dAz dz = (wz dAz dz)• =

(
ẇz + wz

˙dAz

dAz

)
dAz dz (I.63)

and hence

Pz = σ11 ε̇1 + σ22 ε̇2 + σ12 ω
(

exp(ε1 − ε2)− exp(ε2 − ε1)
)

=
∂wz

∂ε1
ε̇1 +

∂wz

∂ε2
ε̇2 + wz

(
ε̇1 + ε̇2

)
(I.64)

Since ε̇1, ε̇2 and ω are arbitrary, we infer the potential relations

σ11 = wz +
∂wz

∂ε1
= wz +

∂wz

∂I1
+ 2(ε1 − ε2)

∂wz

∂I2
= wz +

∂wz

∂I1
+ (4ε1 − 2I1)

∂wz

∂I2

σ22 = wz +
∂wz

∂ε2
= wz +

∂wz

∂I1
+ 2(ε2 − ε1)

∂wz

∂I2
= wz +

∂wz

∂I1
+ (4ε2 − 2I1)

∂wz

∂I2

(I.65)
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Moreover, we must have σ12 = 0 in the case ε1 6= ε2. The back-rotated stress
tensor RT

ze · σ · Rze is therefore co-axial to the strain tensor He. The case
ε1 = ε2 yields σ11 = σ22. Any direction in T0 may then be chosen as b1 or
b2, the normal stresses are equal in all directions and therefore σ12 = 0 must
be valid in this case, too. The equations (I.65) turn out to be the principal
components of the tensor equation

RT
ze · σ ·Rze = wz1T0 +

∂wz

∂H
=

(
wz +

∂wz

∂I1

)
1T0 + 4

∂wz

∂I2

(
H− I1

2
1T0

)

(I.66)
The tensor on the right-hand side appears decomposed into an isotropic and
a deviatoric part (in two dimensions), since the tensor in the bracket is the
deviator of H.

A part of the thick layer corresponding to the area dA of the middle
surface contains the energy

∫ h/2

z=−h/2

wz

(
I1(z), I2(z)

)
dAz(z) dz

=
∫ h/2

z=−h/2

(1− c1z)(1− c2z)wz

(
I1(z), I2(z)

)
dz dA

= w
(
c1, c2, εes, εed, α

)
dA . (I.67)

While wz denotes the energy per actual unit volume of the layer at z, w refers
the energy of the thick layer to the actual unit area of the middle surface.

The rate of energy can be written with (I.56)

(
w dA

)• =
(
ẇ + w

˙dA
dA

)
dA

=
(
∂w

∂c1
ċ1 +

∂w

∂c2
ċ2 +

∂w

∂εes
ε̇es +

∂w

∂εed
ε̇ed +

∂w

∂α
α̇

)
dA

+w
(

˙εes + tr
(
Ḟb · F−1

b

) )
dA (I.68)

with
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∂w

∂c1
= −

h/2∫

z=−h/2

(1− c1z)(1− c2z)
(
wz +

∂wz

∂I1
+ Id(z) yc(z)

∂wz

∂I2

)
z

1− c1z
dz ,

∂w

∂c2
= −

h/2∫

z=−h/2

(1− c1z)(1− c2z)
(
wz +

∂wz

∂I1
− Id(z) yc(z)

∂wz

∂I2

)
z

1− c2z
dz ,

∂w

∂εes
=

∫ h/2

z=−h/2

(1− c1z)(1− c2z)
∂wz

∂I1
dz ,

∂w

∂εed
=

∫ h/2

z=−h/2

(1− c1z)(1− c2z) Id(z) yd(z)
∂wz

∂I2
dz ,

∂w

∂α
=

∫ h/2

z=−h/2

(1− c1z)(1− c2z) Id(z) yα(z)
∂wz

∂I2
dz (I.69)

and the abbreviations

yc(z) = − 1− c1 z

z

∂ trB(z)
∂c1

=
1− c2 z

z

∂ trB(z)
∂c2

=
1− c1 z

1− c2 z
exp(εed)− 1− c2 z

1− c1 z
exp(−εed)

−
(

1− c2 z

1− c1 z
+

1− c1 z

1− c2 z

)(
exp(εed)− exp(−εed)

)
sin2 α

(I.70)

yd(z) =
∂trB(z)
∂εed

=
1− c1 z

1− c2 z
exp(εed)− 1− c2 z

1− c1 z
exp(−εed)

+
(

1− c2 z

1− c1 z
− 1− c1 z

1− c2 z

)(
exp(εed) + exp(−εed)

)
sin2 α

(I.71)

yα(z) =
∂trB(z)
∂α

=
(

1− c2 z

1− c1 z
− 1− c1 z

1− c2 z

)(
exp(εed)− exp(−εed)

)
2 sinα cosα

(I.72)

We go back to (I.59) and (I.60). Since we know meanwhile that σ12 = σ21 = 0,
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we obtain

σ11 b1⊗b1+σ22 b2⊗b2 = RT
ze·σ·Rze = Fp·U−1

ze ·RT
ze·σ·Rze·Uze·F−1

p (I.73)

The last equation is valid since Fp and Uze commute with RT
ze ·σ ·Rze accord-

ing to (I.5) and (I.44) because they have common principal axes. The power
of the layer at z during an elastic and inelastic deformation can therefore be
written

Pz =
(
σ11 b1 ⊗ b1 + σ22 b2 ⊗ b2

)
:
(
U̇ze ·U−1

ze + Ḟb · F−1
b

)
(I.74)

The power of the thick layer is

P dA =
∫ h/2

z=−h/2

Pz(z) dAz(z) dz

=
∫ h/2

z=−h/2

(
σ11 ε̇1 + σ22 ε̇2

+
(
σ11 b1 ⊗ b1 + σ22 b2 ⊗ b2

)
: Ḟb · F−1

b

)
dAz(z) dz

=
(∫ h/2

z=−h/2

(
σ11 ε̇1 + σ22 ε̇2

)
(1− c1z)(1− c2z) dz + T̃ : Ḟb · F−1

b

)
dA

(I.75)

with the abbreviation

T̃ =
∫ h/2

z=−h/2

(1− c1z)(1− c2z)
(
σ11 b1 ⊗ b1 + σ22 b2 ⊗ b2

)
dz

=
∫ h/2

z=−h/2

(1− c1z)(1− c2z) RT
ze(z) · σ(z) ·Rze(z) dz (I.76)

Next we need the rates of the elastic principal strains. We obtain from (I.33),
(I.37)

ε̇1,2 =
1
2

(
ε̇es − ċ1

z

1− c1 z
− ċ2

z

1− c2 z
± q̇

)
(I.77)

The derivative of (I.38) is
(
trB

)• = 2 sinhq q̇ (I.78)

Since q =
√
I2 according to (I.41), we get

q̇ =
1

2 sinh
√
I2

(
trB

)•

=
1

2 sinh
√
I2

(
−yc z

1− c1 z
ċ1 + yc

z

1− c2 z
ċ2 + yd ε̇ed + yα α̇

)
(I.79)
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Now we are able to evaluate the integral
∫ h/2

z=−h/2

(
σ11 ε̇1+σ22 ε̇2

)
(1−c1z)(1−c2z) dz = −m1ċ1−m2ċ2+t̃sε̇es+t̃dε̇ed+t̃αα̇

(I.80)
and find the following coefficients

m1 =

h/2∫

z=−h/2

(1−c1z)(1−c2z)
(
σ11 + σ22

2
+
σ11 − σ22

2
yc

2 sinh
√
I2

)
z

1− c1 z
dz

(I.81)

m2 =

h/2∫

z=−h/2

(1−c1z)(1−c2z)
(
σ11 + σ22

2
− σ11 − σ22

2
yc

2 sinh
√
I2

)
z

1− c2 z
dz

(I.82)

t̃s =
∫ h/2

z=−h/2

(1− c1z)(1− c2z)
σ11 + σ22

2
dz (I.83)

t̃d =
∫ h/2

z=−h/2

(1− c1z)(1− c2z)
σ11 − σ22

2
yd

2 sinh
√
I2
dz (I.84)

t̃α =
∫ h/2

z=−h/2

(1− c1z)(1− c2z)
σ11 − σ22

2
yα

2 sinh
√
I2
dz (I.85)

It can be demonstrated, that the last three quantities are related to the tensor
T̃. To this purpose, we first calculate the deviator of the tensor B taking into
account (I.29 ), (I.71 ), and (I.72).

B(z)− trB
2

(z) 1T0 =
β1(z)− β2(z)

2

(
b1(z)⊗ b1(z)− b2(z)⊗ b2(z)

)

= sinh
√
I2(z)

(
b1(z)⊗ b1(z)− b2(z)⊗ b2(z)

)

=
1
2

(
1− c1z

1− c2z

(
exp(εed) cos2 α− exp(−εed) sin2 α

)

+
1− c2z

1− c1z

(
exp(εed) sin2 α− exp(−εed) cos2 α

))
(
a1 ⊗ a1 − a2 ⊗ a2

)

+
(

1− c1z

1− c2z
− 1− c2z

1− c1z

)
sinα cosα

(
a1 ⊗ a2 + a2 ⊗ a1

)
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=
yd(z)

2
(
a1 ⊗ a1 − a2 ⊗ a2

)

−yα(z)
2

(
exp(εed)− exp(−εed)

)−1(
a1 ⊗ a2 + a2 ⊗ a1

)
(I.86)

Introducing this into (I.76) we get the deviator of T̃

T̃− 1
2

tr T̃ 1T0

=
∫ h/2

z=−h/2

(1− c1z)(1− c2z)
σ11 − σ22

2
(
b1 ⊗ b1 − b2 ⊗ b2

)
dz

=
(
a1 ⊗ a1 − a2 ⊗ a2

)×
∫ h/2

z=−h/2

(1− c1z)(1− c2z)
σ11 − σ22

2
(z)

yd(z)
2 sinh

√
I2(z)

dz

−(
a1 ⊗ a2 + a2 ⊗ a1

)(
exp(εed)− exp(−εed)

)−1

×
∫ h/2

z=−h/2

(1− c1z)(1− c2z)
σ11 − σ22

2
(z)

yα(z)
2 sinh

√
I2(z)

dz

=
(
a1 ⊗ a1 − a2 ⊗ a2

)
t̃d −

(
a1 ⊗ a2 + a2 ⊗ a1

)(
exp(εed)− exp(−εed)

)−1

t̃α

(I.87)
Moreover, we easily see

t̃s =
1
2

tr T̃ (I.88)

I.5 Relaxation

As in (3.33), we postulate that the sum of the external power and the energy
supply of the absorbed mass together must be greater than or at least equal
to the rate of the elastic strain energy.

P dA+ fµ̃ dA ≥ (
w dA

)• (I.89)

Introduction of (I.75) with (I.80), (I.58), and (I.68) yields

−
(
m1 +

∂w

∂c1

)
ċ1 −

(
m2 +

∂w

∂c2

)
ċ2

+
(
t̃s − ∂w

∂εes
− w

)
ε̇es +

(
t̃d − ∂w

∂εed

)
ε̇ed +

(
t̃α − ∂w

∂α

)
α̇

+
(
T̃ +

(
fµ− w

)
1T0

)
: Ḟb · F−1

b ≥ 0 (I.90)
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If (I.65) is inserted into (I.81) to (I.85) and the result compared with (I.69),
then it is seen that all the underlined terms vanish. Note (I.33) and the choice
of the signs in (I.38) which implies

√
I2 =

√
(ε1 − ε2)2 = |ε1 − ε2| = +(ε1 − ε2) (I.91)

so that we have according to (I.43)

Id =
ε1 − ε2

sinh
√
I2

(I.92)

We learn that the rate of the basic transplacement cannot be arbitrary
but must obey the remaining inequality

(
T̃ +

(
fµ− w

)
1T0

)
: Ḟb · F−1

b ≥ 0 (I.93)

The simplest ansatz which guarantees the fulfilment of this inequality is the
following one

Ḟb · F−1
b =

1
η1

(
1
2

tr T̃ + fµ− w

)
1T0 +

1
η2

(
T̃− 1

2
tr T̃ 1T0

)
(I.94)

Here the positive material parameters η1 and η2 characterize the isotropic
and deviatoric viscosity, respectively.

The relaxed state, which will asymptotically be reached, is characterized
by Ḟb = 0 and hence by

1
2

tr T̃ + fµ− w = 0 (I.95)

and

T̃− 1
2

tr T̃ 1T0 = 0 (I.96)

whence we may infer

T̃ =
(
w − fµ

)
1T0 (I.97)

This property of the relaxed state has some important consequences. Since
the last three underlined terms in (I.90) vanish, we infer from (I.95) and
(I.88) and from (I.96) and (I.87)

∂w

∂εes
= t̃s − w = −fµ (I.98)

∂w

∂εed
= t̃d = 0 (I.99)

∂w

∂α
= t̃α = 0 (I.100)
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I.6 Link to the Mesoscopic Approach

The last two equations, completely written as

∂w

∂εed

(
c1, c2, εes, εed, α

)
= 0 (I.101)

∂w

∂α

(
c1, c2, εes, εed, α

)
= 0 (I.102)

are assumed to determine unique solutions εed and α. We write them

εed = ε̄ed
(
c1, c2, εes

)
, α = ᾱ

(
c1, c2, εes

)
(I.103)

Now, according to (I.53), we have

µ = µb exp(−εes) =⇒ εes = ln
µb

µ
,

dµ

dεes
= −µ (I.104)

So the dependence of the energy density w on the variable εes may be sub-
stituted by a dependence on µ and the energy density of the relaxed state
written as

wrel(c1, c2, µ) ≡ w
(
c1, c2, ln(µb/µ), ε̄ed

(
c1, c2, ln(µb/µ)

)
, ᾱ

(
c1, c2, ln(µb/µ)

))

(I.105)
This functional form of the energy density constitutes the basis of the meso-
scopic approach, discussed in chapter 2.

The chain rule gives

∂wrel

∂c1
=
∂w

∂c1
+

∂w

∂εed

∂ε̄ed
∂c1

+
∂w

∂α

∂ᾱ

∂c1
=
∂w

∂c1
(I.106)

— the underlined terms are zero because of (I.101), (I.102). Moreover, since
the first two underlined terms in (I.90) vanish, we find in the relaxed state

m1 = − ∂w
∂c1

= −∂wrel

∂c1
, m2 = − ∂w

∂c2
= −∂wrel

∂c2
(I.107)

A similar line of reasoning gives, with (I.98) and (I.104),

f = − 1
µ

∂w

∂εes
=
∂w

∂µ
=
∂wrel

∂µ
(I.108)

The search for the minimum of the free energy in chapter 2 made use
of the special form wrel of the energy density of the fluid film — but w
was simply written instead of wrel —, and the relevant contribution to the
extended energy was

∫

A

(
wrel(c1, c2, µ)− fµ

)
dA (I.109)
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according to (2.28). The variation of this expression with respect to µ
∫

A

(
∂wrel(c1, c2, µ)

∂µ
− f

)
δµ dA (I.110)

vanishes for arbitrary fields δµ, if (I.108) is valid. One could however have
based the investigation on the more general representation

∫

A

(
w

(
c1, c2, εes, εed, α

)− fµ
)
dA (I.111)

of the extended energy. Its variation with respect to εes, εed, and α
∫

A

( (
∂w

(
c1, c2, εes, εed, α

)

∂εes
− f

dµ

dεes

)
δεes

+
∂w

(
c1, c2, εes, εed, α

)

∂εed
δεed +

∂w
(
c1, c2, εes, εed, α

)

∂α
δα

)
dA (I.112)

vanishes for arbitrary fields δεes, δεed, and δα, if the conditions (I.98) with
(I.104), (I.99), (I.100) are valid.

So it is indeed possible and advantegous to eliminate εed and α in advance
by means of (I.101) and (I.102) and work with (I.109) instead of (I.111).
Note, however, that one cannot proceed in the same manner and get rid of
the variable εes, too, by means of equation (I.108). That equation introduces
the additional variable f , which does not depend on the local properties of
the film alone but — as is shown in chapter 2 — also on the whole system
into which it is embedded.

I.7 The Angle α in the Relaxed State

We want to obtain information on the angle α from equation (I.102). We find
with (I.69), (I.72), (I.43)

0 =
∂w

∂α
=

∫ h/2

z=−h/2

(
(1− c2z)2 − (1− c1z)2

) √
I2(z)

sinh
√
I2(z)

∂wz

∂I2
(z) dz ×

(
exp(εed)− exp(−εed)

)
2 sinα cosα (I.113)

There are four possibilities to satisfy this condition:

• We have c1 = c2 so that the integrand vanishes. The tensor Uc is then
isotropic and hence co-axial with Ue so that α = 0 may be chosen.

• We have εed = 0. The tensor Ue is then isotropic and hence co-axial
with Uc so that α = 0 may be chosen.
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• We have sinα cosα = 0, i.e. the principal axes of the tensors Ue and
Uc coincide. Without loss of generality, the axes may be numbered in
such a way that α = 0 holds.

• The invariant I2 depends on α according to (I.41), (I.31). Therefore,
the integral may vanish for some α 6= 0 even in the case c1 6= c2.

It is by no means obvious whether the last mentioned possibility will or will
not exist at all. If it did, then a unique solution in the sense of (I.103) would
not exist, since we have seen, that a choice of α with sinα cosα = 0 always
satisfies the equation (I.113). So we concentrate on the solution α = 0 alone.
Then the proper vectors aj of Ue according to (I.12), dj of Uc(z) according
to (I.15), and bj(z) of Uze(z) according to (I.20) coincide. Since Uc(z) and
Ue now commute we infer from (I.20)

Uze(z) = λp(z) Ue ·Uc(z) (I.114)

and also

H(z) = lnUze(z) = lnλp(z)1T0 + lnUe + lnUc(z) (I.115)

(I.29) simplifies to

β1(z) =
1− c1z

1− c2z
exp(εed) , β2(z) =

1− c2z

1− c1z
exp(−εed) (I.116)

and (I.33) yields

ε1(z) = εp(z) +
1
2

(
εes + εed

)
+ ln(1− c1 z)

ε2(z) = εp(z) +
1
2

(
εes − εed

)
+ ln(1− c2 z) (I.117)

These equations give the proper numbers of the tensor equation (I.115) —
note (I.15) and (I.22) to (I.25). The invariants according to (I.34) become

I1(z) = ε1(z) + ε2(z) = 2εp(z) + εes + ln(1− c1 z) + ln(1− c2 z) (I.118)

I2(z) =
(
ε1(z)− ε2(z)

)2 =
(
εed + ln(1− c1 z)− ln(1− c2 z)

)2

(I.119)

where (I.118) is identical to (I.36) but (I.119) is much simpler than (I.41)
with (I.31).

The last four equations are those which were also found in case of the
relaxed state on the basis of the much simpler approach in chapter 3, where
co-axiality of Uc(z) and Ue was supposed from the beginning.
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J The Spinning Drop Test

J.1 The Free Energy

Let us consider a tube, containing water and a spherical inclusion of oil
surrounded by an amphiphilic film. If the tube rotates about its axis with an
angular velocity ω, then the bubble will deform under the influence of the
centrifugal force. Such a test is often performed in order to obtain information
about the internal forces of the film.

In order to investigate the deformed shape of the bubble, we must modify
our previous setting. Now we have only one kind of structure and only one
cell. The equation (2.12) becomes

υO =
1

%O(pO)
+

kO

%A(pO)
(J.1)

but now, kO, pO and υO are not constants but fields. The volume element
of the oil-sided cavity is described by dVO = υO dmO, and the total mass in
that volume element is

dm = dmO + dmA =
(
1 + kO

)
dmO =

(
1 + kO

)
υ−1

O dVO (J.2)

We define the effective density of the oil with solved monomeric amphiphile
by

%Oe =
dm

dVO
=

(
1 + kO

)
υ−1

O =
(
1 + kO

) (
1

%O(pO)
+

kO

%A(pO)

)−1

(J.3)

The free energy of the system is given by

F = peV +
∫

A

w(c1, c2, µ) dA+
∫

VO

fO(kO, pO) υ−1
O dVO +

∫

VW

fW(kW, pW) υ−1
W dVW

−ω
2

2

(∫

A

r2µdA+
∫

VO

r2
(
1 + kO

)
υ−1

O dVO +
∫

VW

r2
(
1 + kW

)
υ−1

W dVW

)

(J.4)

The terms with ω2 represent the contribution of the field of centrifugal forces,
since the potential of the centrifugal force acting on the mass dm in the
distance r from the axis of rotation is ω2r2dm/2.

The three constraints (2.5), (2.25), (2.26) have to be modified to read

g ≡ mA −
∫

A

µdA−
∫

VO

kOυ
−1
O dVO −

∫

VW

kWυ
−1
W dVW = 0 (J.5)

hO ≡ mO −
∫

VO

υ−1
O dVO = 0 (J.6)
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hW ≡ mW −
∫

VW

υ−1
W dVW = 0 (J.7)

The extended energy (2.27) becomes

E =
∫

A

(
w(c1, c2, µ) + pe

(
h+ c1c2

h3

12

)
−

(
f +

ω2

2
r2

)
µ

)
dA

+
∫

VO

(
fO(kO, pO) + peυO − f kO − ω2

2
r2

(
1 + kO

)− yO

)
υ−1

O dVO

+
∫

VW

(
fW(kW, pW) + peυW − f kW − ω2

2
r2

(
1 + kW

)− yW

)
υ−1

W dVW

+f mA + yOmO + yWmW (J.8)

In order to find the minimum of E, we can vary the degrees of freedom f ,
yO, and yW, the fields kO, kW, pO, pW, µ and the shape of the film, which
determines the fields c1, c2 of the principal curvatures, the oil and water
volumes VO, VW and the area A.

J.2 Necessary Conditions of a Minimum

If we compare (J.8) with (2.28), we see that the following substitutions have
to be performed.

f → f +
ω2

2
r2 , yO → yO +

ω2

2
r2 , yW → yW +

ω2

2
r2 (J.9)

Therefore, the equation (2.31) has to be replaced by

pO = −
(
fO(kO, pO)− f kO − ω2

2
r2

(
1 + kO

)− yO

)
1

υO(kO, pO)
(J.10)

and the equations (2.32) and (2.41) by

f+
ω2

2
r2 =

∂fO
∂kO

(kO, pO)+
pO

%A(pO)
=
∂fW
∂kW

(kW, pW)+
pW

%A(pW)
=
∂w(c1, c2, µ)

∂µ
(J.11)

The extended energy (J.8) may considerably be simplified by means of (J.10)
to read

E =
∫

A

(
w(c1, c2, µ) + pe

(
h+ c1c2

h3

12

)
−

(
f +

ω2

2
r2

)
µ

)
dA

−
∫

VO

(
pO − pe

)
dVO −

∫

VW

(
pW − pe

)
dVW

+f mA + yOmO + yWmW (J.12)
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Now, E must also be a minimum with respect to any change of the shape of
the film. We modify the discussion of appendix F, replace the abbreviation
(F.2) by

φ = w(c1, c2, µ) + pe

(
h+ detC

h3

12

)
−

(
f +

ω2

2
r2

)
µ (J.13)

and arrive at the result (F.11) with an additional term, which is underlined
in the following

δ

∫

A

φ dA =
∮
δu · (S + n⊗ qT ) · e ds+

∮
δn ·D · e ds

−
∫

A

δu · ´(S + n⊗ qT ) · ∇T dA−
∫

A

δn · (D́ · ∇T − qT

)
dA

−
∫

A

ω2r δr µ dA (J.14)

That term takes into account that the distance r of a surface element dA will
vary by δr = δu · ∇r = δu · er, if the shape of the film changes.

The variation of the oil and water volumes is also determined along the
line of reasoning of appendix F. However, since the pressures are now not
constant within the two fluids, we obtain the result

−δ
∫

VO

(
pO − pe

)
dVO − δ

∫

VW

(
pW − pe

)
dVW

=
∫

A

δu · n pe h trC dA−
∫

A

δu · n p̄n dA (J.15)

with the abbreviation

p̄n = pW

(
1 + trC

h

2
+ detC

h2

4

)
− pO

(
1− trC

h

2
+ detC

h2

4

)
(J.16)

in analogy to (F.18), but must keep in mind that now pO and pW denote the
local pressures on the oil-sided and water-sided surface, respectively, of the
film.

While (F.19) remains valid,

M = − ∂w
∂C

(J.17)

(F.20) has to be replaced by

T =
(
w −

(
f +

ω2

2
r2

)
µ

)
1T + C ·M =

(
w − µ

∂w

∂µ

)
1T + C ·M (J.18)

The last representation results from (J.11) and is identical with (G.5). Since
the structure is closed, the line integrals of (J.14) do not appear. After all,
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the postulate that the variation of E under any change of the shape vanishes,
leads to

0 = −
∫

A

δu ·
(

´(T + n⊗ qT ) · ∇T + p̄nn + µω2 r er

)
dA

−
∫

A

δn ·
(
Ḿ · ∇T − qT

)
dA (J.19)

and yields the following Euler-Lagrangean differential equations
(
T + n⊗ qT

) · ∇T + p̄nn + µω2 r er = 0 (J.20)

1T ·
(
Ḿ · ∇T − qT

)
= 0 (J.21)

Wherever n 6= er, the third term of (J.20) possesses a component in the
tangential direction. But we proved in G.2, that tangential surface forces
are not admissible, if (J.21) is satisfied, and this seems to suggest that the
equilibrium condition (J.20) cannot be fulfilled. However, our proof was based
on the special representation (F.20) of the membrane forces, which is not
applicable here. In our case, the tangential component of the first term of
(J.20) reads — note (J.18), (J.11), (J.21) —

1T · T́ · ∇T −C · qT

= 1T ·
´((

w −
(
f +

ω2

2
r2

)
µ

)
1T + C ·M

)
· ∇T −C · Ḿ · ∇T

= ∇T

(
w −

(
f +

ω2

2
r2

)
µ

)
+ 1T · Ć ·M · ∇T (J.22)

Now

∇T

(
w −

(
f +

ω2

2
r2

)
µ

)

=
∂w

∂C
:
(
Ć⊗∇T

)
+

(
∂w

∂µ
− f − ω2

2
r2

)

︸ ︷︷ ︸
∇T µ́− µω2r∇T ŕ (J.23)

But the underbraced term vanishes according to (J.11), and the underlined
terms in (J.22), (J.23) cancel each other (cf. the argument of (G.27)).

So we retain −µω2r∇T ŕ = −µω2r 1T ·∇ŕ = −µω2r 1T · er, and intro-
ducing this into (J.20), we see that the tangential part of that equation is
identically satisfied.

After all, we only have to consider the equilibrium of forces in the normal
direction, which can be written

T : C +∇T · qT = −p̄n − µω2 r er · n (J.24)
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with p̄n according to (J.16), and observe the equilibrium of moments

qT = 1T · Ḿ · ∇T (J.25)

The pressure field pO of the oil is implicitly given by (J.10). We get better
insight, if we use this equation to compute its gradient field.

υO∇pO = −∂fO
∂kO

∇kO − ∂fO
∂pO

∇pO +
(
f +

ω2

2
r2

)
∇kO

+ω2
(
1 + kO

)
r∇r − pO

(
∂υO

∂kO
∇kO +

∂υO

∂pO
∇pO

)

=
(
−∂fO
∂kO

+ f +
ω2

2
r2 − pO

%A(pO)

)
∇kO −

(
∂fO
∂pO

+ pO
∂υO

∂pO

)

︸ ︷︷ ︸
∇pO

+ω2
(
1 + kO

)
r∇r (J.26)

The underlined expression vanishes because of (J.11) and the underbraced one
because of (2.23). So the gradient of pO points in the direction of the gradient
of r, which means that the pressure is a function of the distance r alone. With
the effective density according to (J.3), we arrive at the differential equation

dpO

dr
= %Oe(r)ω2 r (J.27)

J.3 Introduction of the Constitutive Assumption

We have to replace f by f + ω2r2/2 in the condition (4.16). The energy
density (4.19) of the relaxed state

w(c1, c2, µ) =
µ

µb

(
w0 + w1

((
Gs(c1, c2)− ln

µ

µb

)2

+G(c1, c2)
))

(J.28)

and the expression (4.24)

t̃ ≡ w − µ
∂w

∂µ
= 2w1

µ

µb

(
Gs − ln

µ

µb

)
(J.29)

remain valid. Moreover, we introduce a reference state of the film. Its curva-
tures and the distance from the axis of rotation are zero, and its mass density
µP is hence defined by — cf. (J.11) —

∂w

∂µ

(
0, 0, µP

)
= f =

∂w

∂µ

(
c1, c2, µ

)− ω2

2
r2 (J.30)

This leads to the following modification of (4.22)

ln
µ

µb
= Gs − 1 +

√
GP −G+ S2

P +
µbω2

2w1
r2 (J.31)
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with the abbreviations

SP = 1−GsP + ln
µP

µb
(J.32)

and — note (4.37), (4.38) —

GsP = Gs(0, 0) =
2
3
q , GP = G(0, 0) =

16
45
q2 +

4
3
h̄ 2

0 (J.33)

Now, the radii of curvature of the amphiphilic bubble will be much larger
than the thickness of the film. So the dimensionless quantities

h̄ =
h

2
H =

h

4
(
cs + cφ

)
, d̄ =

h

2
D =

h

4
(
cs − cφ

)
(J.34)

according to (4.35) will be very small. Moreover, the expression µbω
2 r2/(2w1)

will also be a small quantity. So it seems sufficient to express w and t̃ by
second-order Taylor approximations in h̄, d̄, and r.

With the help of (4.37), (4.38), and with the abbreviation

w∗ = 2w1
µP

µb
(J.35)

we arrive at

w = wP + whh̄+ whhh̄
2 + wddd̄

2 + wrr
µbω

2

4w1
r2 (J.36)

with

wP =
1
2
w∗

(
w0

w1
+

(
1− SP

)2 +GP

)
(J.37)

wh =
4
3
(
wP − w∗

)
S−1

P h̄0 (J.38)

whh =
8
9

((
1− S−1

P

)
wP −

(
2− S−1

P

)
w∗

)
S−2

P h̄2
0

−1
3
wP − 2

3
(
wP − w∗

)
S−1

P

(
1− 4

15
q
)

(J.39)

wdd = −1
3
wP − 2

3
(
wP − w∗

)
S−1

P

(
κ− 4

15
q
)

(J.40)

wrr = S−1
P wP +

(
1− S−1

P

)
w∗ (J.41)

and

t̃ = t̃P + t̃hh̄+ t̃hhh̄
2 + t̃ddd̄

2 + t̃rr
µbω

2

4w1
r2 (J.42)
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with

t̃P = w∗
(
1− SP

)
(J.43)

t̃h = − 4
3
w∗h̄0 (J.44)

t̃hh = −8
9
w∗S−1

P h̄2
0 −

1
3
w∗

(
1− SP

)
+

2
3
w∗

(
1− 4

15
q
)

(J.45)

t̃dd = −1
3
w∗

(
1− SP

)
+

2
3
w∗

(
κ− 4

15
q
)

(J.46)

t̃rr = −w∗ (J.47)

J.4 Cylindrical Co-ordinates

An axi-symmetric surface under axi-symmetric loading is best described with
cylindrical co-ordinates r, φ, z. The scalar components of all field quantities
may be represented as functions of the arc length s on the meridian. The unit
normal vector n of the surface, the unit tangent vector e of the meridian and
the basis vectors of the co-ordinate system are related by (cf. fig. J.1)

n = − sinα er − cosα ez , e = cosα er − sinα ez . (J.48)

The following formulae are valid

∂er

∂φ
= eφ ,

∂eφ

∂φ
= −er , (J.49)

∂e
∂s

=
∂

∂s

(
cosα(s) er(φ)− sinα(s) ez

)
= (− sinα er − cosα ez)

dα

ds
=
dα

ds
n

(J.50)
∂e
∂φ

=
∂

∂φ

(
cosα(s) er(φ)− sinα(s) ez

)
= cosα eφ (J.51)

∂n
∂s

= −dα
ds

e ,
∂n
∂φ

= − sinα eφ . (J.52)

The curvature tensor becomes

C = −n⊗∇T = −ń⊗
(
e
∂

∂s
+ eφ

∂

r∂φ

)
= −∂n

∂s
⊗ e− ∂n

r∂φ
⊗ eφ

=
dα

ds
e⊗ e +

sinα
r

eφ ⊗ eφ = cs e⊗ e + cφ eφ ⊗ eφ . (J.53)

with the principal curvatures

cs =
dα

ds
, cφ =

sinα
r

. (J.54)
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Since the tensor of membrane forces and the tensor of moments are co-axial
with the tensor of curvature, their spectral form is given by

T = ts e⊗ e + tφ eφ ⊗ eφ , M = ms e⊗ e +mφ eφ ⊗ eφ . (J.55)

The divergence of the tensor of moments becomes

M · ∇T

=
( ´
ms(s) e(s, φ)⊗ e(s, φ) +mφ(s) eφ(φ)⊗ eφ(φ)

) ·
(
e
∂

∂s
+ eφ

∂

r∂φ

)

=
dms

ds
e +ms

∂e
∂s

+mse
( ∂e
r∂φ

· eφ

)
+mφ

∂eφ

r∂φ

=
dms

ds
e +mscsn +ms

cosα
r

e− mφ

r
er , (J.56)

According to (J.25), this implies

qT = 1T · (
Ḿ · ∇T

)
= (e⊗ e + eφ ⊗ eφ) · (Ḿ · ∇T

)
= q e (J.57)

with the transverse force

q =
dms

ds
+
ms −mφ

r
cosα (J.58)

and we get

∇T · qT =
(
e
∂

∂s
+ eφ

∂

r∂φ

)
· ´(
q e

)
=
dq

ds
+ q

(
∂e
r∂φ

· eφ

)
=
dq

ds
+
q

r
cosα .

(J.59)
Thus (J.24) yields

− p̄n + µω2 r sinα = T : C +∇T · qT = tscs + tφcφ +
dq

ds
+
q

r
cosα . (J.60)

Moreover, we know that the tangential part of (J.20) is identically satisfied,
and its component in the direction e reads

0 = e · (T́ · ∇T

)− e ·C · qT + µω2 r er · e

=
dts
ds

+
ts − tφ
r

cosα− qcs + µω2 r cosα (J.61)

We multiply (J.60) by r cosα and (J.61) by r sinα, add these equations, note
(J.54) and the identity

dr

ds
= cosα (J.62)

and find
d

ds

(
r
(
ts sinα+ q cosα

))
= −r p̄n cosα (J.63)

136



Now, −2πr (ts sinα + q cosα) is the resultant of the z-components of the
internal forces on a cut at z = const, and −2πrp̄ncosα is the z-component of
the surface load on a unit ring. Therefore (J.63) is easily interpreted as the
condition of global equilibrium of the forces in the z-direction.

(J.54) and (J.62) imply

d

ds

(
r sinα

)
= r cosα

dα

ds
+ r

dr

ds

sinα
r

= r cosα
(
cs + cφ

)
(J.64)

Multiplying this with some constant t0, which will be fixed later, and adding
it to (J.63), we obtain

d

ds

(
r
(
(ts + t0) sinα+ q cosα

))
= −r

(
p̄n − t0

(
cs + cφ

))
cosα (J.65)

Integrating this equation from the pole — where s = 0 and r = 0 hold — we
arrive at a finite expression for the transverse force q.

q = −(ts+t0) tanα− 1
r cosα

∫ s

s̄=0

r(s̄)
(
p̄n−t0

(
cs+cφ

))
(s̄) cosα(s̄) ds̄ (J.66)

We recall (J.36), (J.34) and obtain the bending moments

ms = − ∂w
∂cs

= −
(
wh

h

4
+ whh

h2

8
(
cs + cφ

)
+ wdd

h2

8
(
cs − cφ

))
(J.67)

mφ = − ∂w

∂cφ
= −

(
wh

h

4
+ whh

h2

8
(
cs + cφ

)− wdd
h2

8
(
cs − cφ

))
(J.68)

Now, (J.54) and (J.62) also imply

dcφ
ds

=
(
cs − cφ

)cosα
r

(J.69)

which is a special case of Codazzi’s identity. Noting this and inserting (J.67),
(J.68) into (J.58), we obtain

q = −(
whh + wdd

)h2

4
dH

ds
(J.70)

If an element dA of the middle surface of the film possesses the distance
r from the axis, then the distances of the corresponding elements dA+ and
dA− on the boundary surfaces according to (D.8), (D.9) are — note (J.54) —
r ∓ (h/2) sinα = r(1∓ hcφ/2).

Now, we adopt the simplifying assumption that the effective density %Oe

of the oil does not depend on r. Then (J.27) can be integrated to give the oil
pressure field

pO = pO0 + %Oe
ω2

2
r2 (J.71)
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and the expression (J.16) reads

p̄n =

(
pW0 + %We

ω2

2
r2

(
1 +

h

2
cφ

)2
)(

1 +
h

2
(cs + cφ) +

h2

4
cscφ

)

−
(
pO0 + %Oe

ω2

2
r2

(
1− h

2
cφ

)2
)(

1− h

2
(cs + cφ) +

h2

4
cscφ

)

=
(
pW0 − pO0

) (
1 +

h2

4
cscφ

)
+

(
pO0 + pW0

)h
2
(cs + cφ)

+
(
%We − %Oe

)ω2

2
r2

(
1 +

3h2

4
cφ(cs + cφ) +

h4

16
csc

3
φ

)

+
(
%We + %Oe

)ω2

2
r2

(
h

2
cs + 3

h

2
cφ +

3h3

8
csc

2
φ +

h3

8
c3φ

)
(J.72)

The terms containing the curvatures are very small compared to 1. On the
other hand, the pressure difference pW0 − pO0 at the pole will be very small
compared with the mean pressure (pO0+pW0)/2. So we neglect the underlined
terms and arrive at the simple representation

p̄n − t0(cs + cφ) = pW0 − pO0 +
(
%We − %Oe

)ω2

2
r2 (J.73)

if we give t0 the following meaning

t0 ≡
(
pO0 + pW0

)h
2

(J.74)

The integral of (J.66) can then be evaluated with the help of (J.62), as long
as r is monotonously increasing with s, to give

∫ s

s̄=0

r(s̄)
(
p̄n − t0

(
cs + cφ

))
(s̄) cosα(s̄) ds̄

=
∫ r

r̄=0

r̄
(
p̄n − t0

(
cs + cφ

))
(r̄) dr̄

=
(
pW0 − pO0

)r2
2

+
(
%We − %Oe

)ω2

2
r4

4
(J.75)

The membrane force in the direction e may be read from (J.18) with (J.29)

ts = w − µ
∂w

∂µ
+mscs = t̃+mscs (J.76)

In addition to (J.34), we define

c̄φ = h̄− d̄ =
h

2
cφ , c̄s = h̄+ d̄ =

h

2
cs (J.77)
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Introducing (J.42), (J.67) with (J.34), (J.47) into (J.76) we obtain

ts(h̄, c̄φ, r) = t00 + t10h̄+ t01c̄φ + t20h̄
2 + t11h̄ c̄φ + t02c̄

2
φ −w∗

µbω
2

4w1
r2 (J.78)

with

t00 = t̃P , t10 = t̃h − wh , t01 =
1
2
wh (J.79)

t20 = t̃hh + t̃dd − 2
(
whh + wdd

)
(J.80)

t11 = −2t̃dd + whh + 3wdd , t02 = t̃dd − wdd (J.81)

J.5 The Differential Equations of the Bubble

We choose

r̄ =
2
h
r (J.82)

as the dimensionless independent variable, note

2
h

d

dr̄
=

d

dr
=

1
cosα

d

ds
(J.83)

according to (J.62), and replace the trigonometric functions of α by means of
sinα = r cφ = r̄ c̄φ according to (J.54). Then (J.69) and (J.70) with (J.66),
(J.75) yield a system of one linear and one nonlinear differential equation for
the computation of c̄φ(r̄) and h̄(r̄):

dc̄φ
dr̄

=
2
r̄

(
h̄− c̄φ

)
, (J.84)

dh̄

dr̄
=

r̄

1− r̄ 2c̄ 2
φ

(
whh + wdd

)−1 ×

((
ts(h̄, c̄φ, r̄) + t0

)
c̄φ +

h

4
(
pW0 − pO0

)
+

(
%We − %Oe

)h3

64
ω2r̄ 2

)
(J.85)

With (J.78), equation (J.85) may be rewritten as follows
(
t00 + t0 +t10h̄+ t01c̄φ + t20h̄

2 + t11h̄c̄φ + t02c̄
2
φ︸ ︷︷ ︸

)
c̄φ

−(
whh + wdd

)1− r̄ 2c̄ 2
φ

r̄

dh̄

dr̄
= b0 − b1 r̄

2 (J.86)

with the abbreviations

b0 =
h

4
(
pO0 − pW0

)
(J.87)
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and

b1 =
((
%We − %Oe

)
h− 8µP c̄φ

)h2ω2

64
≈ (

%We − %Oe

)h3

64
ω2 (J.88)

The second term is negligible compared to the first one because of the very
small factor c̄φ. This reflects the fact that the effect of the centrifugal force
acting on the thin film is much smaller than that of the centrifugal forces
acting on the bulk oil and water.

J.6 The Membrane Solution

The equations (J.84) and (J.85) take into account the bending behaviour of
the film, i.e. the existence of bending moments and transverse forces and the
fact that the membrane forces are different in the meridional and latitudinal
direction. Conventionally, the spinning drop test is interpreted on the basis
of the theory of capillarity, which allows nothing but an isotropic membrane
force tM, that does not depend on the curvature. Therefore, we have to put
qT = 0 and T = tM1T in equation (J.24). Moreover the second term on
the right-hand side of (J.24) can be neglected with respect to the first one
according to (J.88). So we retain the so-called membrane equation — note
(J.73), (J.87), (J.88) —

tM1T : C = 2 tMH = −p̄n = −2 t0H + b0
4
h
− b1

32
h3

r2 (J.89)

It seems useful to define the surface tension by

tS = tM + t0 = tM +
(
pO0 + pW0

)h
2

(J.90)

so that we obtain

2 tSH = b0
4
h
− b1

32
h3

r2 (J.91)

In order to extract the same result from (J.86), we must omit the underbraced
terms, which represent a dependence of the membrane forces on the curvature,
and the underlined term, which describes the contribution of the transverse
force as can be seen from (J.70). This leads to

c̄φ = c̄0 − c̄1r̄
2 (J.92)

with

c̄0 =
b0
tS
, c̄1 =

b1
tS

(J.93)

and (J.84) yields

h̄ = c̄0 − 2c̄1r̄ 2 (J.94)

But the last equation is, indeed, equivalent to (J.91).
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We need some geometrical properties of the shape of the film according
to this membrane solution. The function

sinα = r̄c̄φ = c̄0r̄ − c̄1r̄
3 (J.95)

must reach the value 1 at the equator of the bubble, the radius of which shall
be denoted by a . If we define ā = (2a)/h, then the dimensionless principal
curvatures at the equator are given by

c̄φE = c̄0 − c̄1ā
2 =

1
ā
, c̄sE = c̄0 − 3c̄1ā 2 (J.96)

and yield

c̄0 =
1
2

(
3
ā
− c̄sE

)
, c̄1 =

1
2ā2

(
1
ā
− c̄sE

)
(J.97)

We consider the ratio

β =
c̄1
c̄ 3
0

=
4
ā2

(
1
ā
− c̄sE

)(
3
ā
− c̄sE

)−3

≈ 4
27
− 4

81
ā 2c̄2sE (J.98)

and find

β ≤ 4
27

=⇒ c̄1 ≤ 4
27
c̄ 3
0 (J.99)

Since the bubble is prolate, the curvature c̄sE of the meridian at the
equator is small compared to the curvature c̄φE = 1/ā of the equator line. If
it is neglected, as has been practised by Vonnegut, then (J.97) simplifies to

c̄0 =
3
2ā

, c̄1 =
1

2ā3
(J.100)

This implies, with (J.93), (J.87), (J.88),

tS =
b1
c̄1

=
(
%We − %Oe

)a3

4
ω2 (J.101)

=
b0
c̄0

=
a

3
(
pO0 − pW0

)
(J.102)

The quantities on the right-hand-side of (J.101) can be measured so that tS
can be inferred. Then (J.102) yields the pressure difference at the pole.

Finally, the constraints (J.5), (J.6), (J.7) have to be discussed. The de-
formation of the bubble increases its surface. Therefore amphiphile which
was solved within the oil or the water must be embedded into the film. The
second term in (J.5) increases while the last two terms diminish. Neverthe-
less, this effect is so small that the oil-sided and water-sided volumes almost
remain constant according to (J.6), (J.7). If we neglect the thickness h of the
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film with respect to the dimensions of the bubble and note dz = −dr tanα
and (J.95), (J.98), we obtain the volume of the oil-sided cavity in the form

VO =
∫
πr2 dz = −2π

∫ 0

r=a

tanα(r) r2 dr =
π

6
h3

c̄ 3
0

Θ(β) (J.103)

with the abbreviations

Θ(β) ≡ 3
2

∫ ua(β)

u=0

u− βu3

√
1− (u− βu3)2

u2 du (J.104)

u = c̄0r̄ and ua = c̄0ā. According to (J.96), the latter is the smallest positive
solution of the cubic equation

ua − βu3
a = 1 (J.105)

which varies from ua(β= 0) = 1 to ua(β= 4/27) = 3/2. Now, Θ(β) increases
from Θ(0) = 1 to Θ(4/27) =∞. Therefore, if we assume the conservation of
VO, we see that the curvature c̄0 increases according to

c̄0(β) = c̄0(0) 3
√

Θ(β) (J.106)

with increasing β, while the radius at the equator decreases according to

ā(β) =
ua(β)
c̄0(β)

= ā(0)
ua(β)
3
√

Θ(β)
(J.107)

After all, we see that the fulfilment of the constraints (J.5), (J.6), (J.7) is
possible without difficulties. Since we will have ā(β) ¿ ā(0) in case of suffi-
ciently high angular velocities, the value of β will be near to 4/27 and hence
c̄sE ≈ 0 according to (J.98). So the approximation (J.100) is accurate enough,
and an evaluation of (J.104) to (J.107) is not necessary in order to obtain
the membrane force tM.

The knowledge of the surface tension yields information on the mass
density and the energy density. (J.32), (J.33), (J.43), and (J.35) give

δ ≡ GsP − ln
µP

µb
=

2
3
q − ln

µP

µb
= 1− SP =

tM
w∗

=
tM
2w1

µb

µP
(J.108)

Hence
µP

µb
= exp

(2
3
q
)

exp(−δ) =
tM
2w1

δ−1 (J.109)

and, since |δ| is small,

exp
(
− 2

3
q
) tM

2w1
= δ exp(−δ) ≈ δ (J.110)

and the mass density becomes

µP

µb
= exp

(2
3
q
)

exp(−δ) ≈ exp
(2

3
q
)(

1− δ
) ≈ exp

(2
3
q
)
− tM

2w1
(J.111)
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Introducing this together with (J.35), (J.33), (J.108) into (J.37) we obtain
the energy density

wP = w1
µP

µb

(
w0

w1
+

16
45
q2 +

4
3
h̄ 2

0 +
(
tM
2w1

µb

µP

)2
)

(J.112)

Noting (J.11) and (J.74), assuming incompressibility of the fluids, and putting
r = 0, we further get

f =
1
2

(
dfO
dkO

(kO) +
dfW
dkW

(kW) +
pO0 + pW0

%A

)
= k +

t0
h%A

(J.113)

with the abbreviation

k =
1
2

(
dfO
dkO

(kO) +
dfW
dkW

(kW)
)

(J.114)

Now, if r = 0, (J.29) implies

t̃ = w − µ
∂w

∂µ
= t̃P = wP − fµP = tM (J.115)

and hence

tM
w1

µb

µP
=
w0

w1
+

16
45
q2 +

4
3
h̄ 2

0 +
(
tM
2w1

µb

µP

)2

− µb

w1
k − t0

w1

µb

h%A
(J.116)

The introduction of (J.111) and (J.90) yields a quadratic equation in tS with
the solution

tS
w1

=
t0
w1

+ 2 exp
(

2
3
q

)
×

(
1−

(
2−

√
1− w0

w1
− 16

45
q2 − 4

3
h̄ 2

0 +
µb

w1
k +

t0
w1

µb

h%A

)−1
)

(J.117)

If the expression under the square root is almost 1, then we may use a first
order Taylor approximation and obtain

tS = tS0 + tS1h̄
2
0 (J.118)

with

tS0 = exp
(

2
3
q

)(
w0 + w1

16
45
q2 − µbk

)
+ t0

(
1− exp

(
2
3
q

)
µb

h%A

)
(J.119)

tS1 =
4
3
w1 exp

(
2
3
q

)
(J.120)

It is to be expected that the dependence of the coefficients tS0 and tS1 on the
temperature is negligible, while the dependence of the preferred curvature h̄0
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is strong. If a linear relation between h̄0 and the temperature holds, then the
surface tension is, in good approximation, a quadratic function of the tem-
perature with a minimum at some temperature which characterizes h̄0 = 0.
This is confirmed by experimental findings of Sottmann[15]. We see, that the
minimum value tS0 of the surface tension depends on k and t0 and hence on
the mass fractions of the monomeric solutions of the amphiphile and on the
mean pressure which will be nearly the environmental pressure. All the other
symbols in (J.119) represent material constants of the film. The coefficient
tS1 is a material constant, too, and can be inferred from measurements if the
relation between h̄0 and the temperature is known.

J.7 The part of the bending moments

In the last section, we discussed the spinning drop test on the basis of the
membrane theory, i.e. we totally disregarded bending effects. However, bend-
ing moments are actually present and we have to find out whether the mem-
brane solution is of any use at all in the context of the more general bending
theory. To this purpose, we introduce (J.92) and (J.94) with (J.93), (J.79),
(J.80), (J.81) into (J.86) and obtain

(
t̃P + t0

)(
c̄0 − c̄1r̄

2
)

+
(
c̄0 − c̄1r̄

2
)(
t̃h

(
c̄0 − 2c̄1r̄ 2

)− 1
2
wh

(
c̄0 − 3c̄1r̄ 2

))

+
(
c̄0 − c̄1r̄

2
)(
t̃hh

(
c̄0 − 2c̄1r̄ 2

)2 + t̃dd

(
c̄1r̄

2
)2

)

+whh

(
4c̄1 −

(
c̄0 − c̄1r̄

2
)(
c̄20 − c̄0c̄1r̄

2 + 2(c̄1r̄ 2)2
))

+wdd

(
4c̄1 −

(
c̄0 − c̄1r̄

2
)(

3c̄0 − c̄1r̄
2
)
c̄1r̄

2
)

= tS
(
c̄0 − c̄1r̄

2
)

(J.121)

The dimensionless curvatures c̄φ and h̄ are very small everywhere and so are
c̄0 and c̄1r̄ 2 according to (J.92), (J.94). The terms that are not underlined in
(J.121) are of the third order in these quantities. (Note, that (J.99) implies
that c̄1 is of the third order, too.) The once underlined terms are of the sec-
ond order and the twice underlined ones of the first order. Only the terms
of the leading order need to be retained since all the others are negligible
compared to them. So we arrive at the conclusion t̃P = tS− t0 = tM, and the
surface tension inferred from the membrane theory minus the contribution
of the mean pressure is thus seen to describe the membrane force of the film
accurately.

Actually, the situation is a little more complex. If we introduce (J.118)
and (J.38), (J.44) into the left-hand side of (J.121) and consider only the pole
of the bubble, i.e. the point with r̄ = 0, then the underlined terms become
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(
tS0 + tS1h̄

2
0

)
c̄0 − 2

3
(
2w∗ + (wP − w∗)S−1

P

)
h̄0c̄

2
0 (J.122)

If |h̄0| À c̄0, then, indeed, the once underlined term is of the second order
and the twice underlined one of the first order in c̄0. If, however, the order of
magnitude of |h̄0| is the same as that of c̄0, then we are near the minimum of
the surface tension, the once underlined term is even of the third order and
can be neglected all the more.

The situation would be totally different, however, if the minimum value
tS0 of the surface tension were exactly equal to zero. In this pathological case,
the twice underlined term is of the third order, too, no simplification of the
bending differential equation is possible, and the membrane solution is not
applicable in this range.

The bending moment at the pole can be inferred from (J.67), (J.68) with
(J.38) to be

m = −h
6

(
2
(
wP − w∗

)
S−1

P h̄0 + 3whhc̄0

)
(J.123)

We are confronted with a paradoxical situation. If |h̄0| is large, then the
bending moments of the film are large, too. But then the bending effects
can totally be neglected and only membrane theory be applied. If, however,
|h̄0| is small, then the bending moments are small, too. In the mentioned
pathological case, this is just the range where membrane theory must be
discarded since bending effects become dominant.

The paradox can be resolved as follows. The surface tension in the middle
surface and the bending moment together can be replaced by a force in a
distance e from the middle surface such that |m| = tS e. We find

e

h
=
|m|
h tS

=
|2(
wP − w∗

)
S−1

P h̄0 + 3whhc̄0|
6
(
tS0 + tS1h̄2

0

) (J.124)

If |h̄0| À c̄0, then the offset e turns out to be of the order of magnitude
of the film thickness h. Therefore, from the point of view of the film, the
strain due to the bending moment is at least as large as the strain due to
the surface tension and by no means negligible. But from the point of view
of the bearing behaviour of the bubble, the tiny deviation of the force from
the middle surface is of no account.

If h̄0 → 0, then, in general, e/h will become very small. In the patho-
logical case tS0 = 0, however, this ratio tends to infinity. We can resume:
Bending effects can be neglected, if the offset of the surface tension is small
compared to the dimensions of the cell. This applies to the spinning drop
test except in the pathological case. On the other hand, such a restriction
to the membrane theory is surely not justified with the nanostructures of a
microemulsion, where the dimension of the cell and the thickness of the film
are of the same order of magnitude.
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