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Abstract The paper starts with a detailed investigation of the boundary conditions at free and fixed boundaries
of any second gradient material and clarifies whether a surface tension is to be expected. The classical approach
to the reaction stresses of higher gradient materials leaves a vast indeterminacy in most boundary value
problems. An advanced approach is presented that yields much more definite distributions of the reaction
stresses and consequently also of the surface tension. It starts from a compressible fluid the stiffness and bulk
viscosity of which tend to infinity. Furthermore, the complete set of restrictions on the material parameters of
linear incompressible second gradient fluids is derived from the postulate of nonnegative dissipation. Finally, a
stirring processwith a free surface is studied as an example.The results are basedon the numerical solutionof the
boundary value problems of three partial differential equations of second, fourth and sixth order, respectively.

Keywords Second gradient fluid · Incompressible · Surface tension · Reaction stresses · Restrictions on
material parameters · Stirring

1 Introduction

The constitutive model of a linear second gradient fluid is a natural extension of the classical Navier–Stokes
fluid. Incompressibility is an assumption of practical importance. It was St.-Venant [1] who conjectured in
1869 that the consideration of higher velocity gradients might improve the description of turbulent flows. But
this approach was not elaborated for a long time. Trostel [2] and his coworkers in Berlin took care of the
subject since 1985. There are also plenty of publications on capillary fluids (e.g., [3–6]) which are extensions
of Euler’s inviscid compressible fluid.

The paper at hand reveals several aspects of second gradient materials in general and especially second
gradient linear fluids that seem not to have been in the focus of former investigations, e.g., [3,7,8].

Section 2 derives boundary conditions from the principle of virtual velocities. It turns out that a free surface
of a second gradient material—whatever be its constitutive behavior—is endowed with a crust shell that is the
basis of a surface tension of dimension force per length.

Section 3 elaborates the properties of a compressible linear second gradient fluid, while Sect. 4 carries
out the reduction to the incompressible case. There is only a pressure field p as a reaction quantity with the
Navier–Stokes fluid. It can be computed together with the velocity field if there is a free surface. In contrast
to this, a vector field q appears as an additional reaction quantity with a second gradient material. This is
not uniquely determined even in the presence of a free surface. This unsatisfactory situation is defused by an
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advanced approach: The incompressible material is regarded as the limiting case of a compressible one the
stiffness and bulk viscosity of which tend to infinity.

Section 5 presents restrictions on the material parameters.
Sections 6, 7 and 8 examine a stirring process as an example. It turns out that not only the primary flow

but also a secondary flow must be taken into account in order to determine the shape of the free surface. The
reaction fields p and q remain vague unless the advanced approach is applied.

The results can be visualized if special assumptions on the geometry and the material parameters are made.
This is done in Sect. 9. The boundary value problems of three partial differential equations of second, fourth
and sixth order, respectively, are attacked by means of a difference scheme, and some results are discussed
and visualized.

2 Internal and external virtual power

The properties of second gradient materials are extensively elaborated in a compendium by Bertram [9]. An
article of Bertram is especially devoted to viscous gradient fluids [10]. Details can also be found in a recent
book [11].

The virtual stress power per unit volume of a second gradient material is a linear form of the first and
second virtual velocity gradients δv ⊗ ∇ and δv ⊗ ∇ ⊗ ∇, respectively:

δπi = T2 : δv ⊗ ∇ + T3 : · δv ⊗ ∇ ⊗ ∇ (1)

(Notation: A dot denotes a contraction. Themultiple contraction is written a⊗b⊗c : · d⊗e⊗f = a ·d b·e c ·f
and a ⊗ b : d ⊗ e = a · d b · e .) The second-order stress tensor T2 is symmetric due to the postulate of
invariance of the virtual stress power under superimposed rigid body motions. The third-order stress tensor
T3 enjoys the same symmetry in the last two entries as the second velocity gradient, since an antimetric part
would give no contribution to the virtual power. The virtual stress power of a whole body may be reformulated
by twice applying the divergence theorem:

δΠi =
∫ (

T2 : δv ⊗ ∇ + T3 : · δv ⊗ ∇ ⊗ ∇)
dV

= −
∫

δv · X · ∇ dV +
∫ (

δv · X · n + (T3 · n) : δv ⊗ ∇
)
dA (2)

We used the abbreviation
X ≡ T2 − T3 · ∇ (3)

Imagining any cut through a body, we infer from the surface integral that the interaction across such a cut is
described by the vector X · n and the non-symmetric second-order tensor T3 · n. Both values depend on the
special cut only through the local orientation n as is the case with Cauchy’s stress vector in the classical theory.
This interpretation differs from that usually found in the literature (cf. [3,7–11]) and has serious consequences
in the sequel.

If we want to treat boundary conditions it is useful to split the gradient on the surface into a tangential and
a normal part.

∇ = ∇t + n
∂

∂n
(4)

and to introduce the non-symmetric second-order tensor

T ≡ (T3 · n) · (1 − n ⊗ n) (5)

This allows the following representation of the surface integral
∫

δv · X · n dA +
∫

T : δv ⊗ ∇t dA +
∫

∂δv
∂n

· T3 : n ⊗ n dA (6)

The virtual power of the external forces is given by

δΠe =
∫

δv · ρ
(
b − a

)
dV +

∫
δv · te dA
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+
∫

∂δv
∂n

· t̄e dA +
∫

Te : δv ⊗ ∇t dA (7)

The mass density is denoted by ρ, the body force per unit mass by b, the acceleration with respect to an inertial
frame by a and the stress on the surface by te. Additional surface stresses t̄e and Te are possible with second
gradient materials. The necessity of Te was overlooked so far.

The equality of the internal and external virtual power requires

0 = −
∫

δv ·
(
X · ∇ + ρ

(
b − a

))
dV +

∫
∂δv
∂n

·
(
T3 : n ⊗ n − t̄e

)
dA

+
∫

δv ·
(
X · n − te

)
dA +

∫
(T − Te) : δv ⊗ ∇t dA (8)

This implies the balance of momentum in the form

X · ∇ + ρ
(
b − a

) = 0 (9)

Now let us consider a boundary where the velocity v is given, but the normal derivative ∂v/∂n of the
velocity is free. So δv = 0 and δv ⊗ ∇t = 0 and the following boundary condition remains:

T3 : n ⊗ n = t̄e (10)

Next we consider a free surface. It is impossible to postulate that the three independent integrals vanish since
only two boundary conditions are admissible. Such a difficulty is well known fromKirchhoff’s theory of plates.
Thomson and Tait solved the problem by applying integration by parts along the free edge. We use Stokes’
theorem ∮

dr =
∫

dA n × ∇ =
∫

dA n × ∇t (11)

in an analogous manner. We introduce the line element dr = tdL on the boundary of a smooth part of that
surface and the outward unit normal there in the tangential plane m = t × n. We denote the difference of the
tensors T and Te on the inside and the outside of the free surface by

S ≡ T − Te with S · n = 0 (12)

We apply the product rule and find∮
δv · S · m dL =

∮
δv · S · (dr × n) =

∫
dA δv · S ·

(
(n × ∇t ) × n

)

=
∫

dA δv · S ·
(
(n × ∇t ) × ń

)
+

∫
dA δv́ · S ·

(
(n × ∇t ) × n

)

+
∫

dA δv · Ś ·
(
(n × ∇t ) × n

)

= −
∫

dA δv · (ń · ∇t ) S · n +
∫

dA S : δv́ ⊗ ∇t +
∫

dA δv · Ś · ∇t (13)

The accent indicates on which field ∇t is to be applied. We made use of the identities

(n × ∇t ) × n = (n · n) ∇t − (n · ∇t ) n = ∇t (14)

and
(n × ∇t ) × ń = (n · ń) ∇t − (ń · ∇t ) n (15)

The underlined terms vanish. So the local mean curvature H = −n · ∇t/2 does not enter the expression.
The last two integrals of Eq. (8) can now be replaced by∫

δv ·
(
X · n − S · ∇t − te

)
dA +

∮
δv · S · m dL (16)

and the following two boundary conditions remain:

T3 : n ⊗ n = t̄e, S · ∇t − X · n + te = 0 (17)
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The last equation is well known. It is the equilibrium condition of forces of a thin shell with stress tensor S. We
infer that a crust shell is present at the free surface of any second gradient body. This shell is loaded from the
inside by the stress −X · n and from the outside by the given stress te. The tensor S may be called the surface
tension of the body. Imagining any cut through the crust shell normal to the vectorm we find a vector S ·m of
dimension force per length. It possesses components in the normal, shear and transverse direction. The crust
shell is however free of bending and torsional moments and no surface energy is attributed to it.

The situation at a fixed boundary is ambiguous. If the counterpart of the body under consideration also
consists of a second gradient material, then we learn from (8) that it can provide a reaction vector te = X · n
and a reaction tensor Te = T so that S = 0 according to (12) and no crust shell is needed. If, on the other hand,
the counterpart consists of a simple material, then it cannot provide a reaction tensor Te and a crust shell with
S = T must exist. The reaction vector is then te = X · n − S · ∇t . This seems not to have been discussed yet.

3 The compressible fluid

3.1 Kinematics

The first velocity gradient can be split into a deviatoric and a spherical part according to

v ⊗ ∇ = (v ⊗ ∇)∗ + 1

3
(∇ · v) 1 with (v ⊗ ∇)∗ : 1 = 0 (18)

This implies the following decomposition of the second gradient:

v ⊗ ∇ ⊗ ∇ = (v ⊗ ∇)∗ ⊗ ∇ + 1

3
1 ⊗ ∇(∇ · v) (19)

and hence

∇ ⊗ v ⊗ ∇ = (∇ ⊗ v)∗ ⊗ ∇ + 1

3
1 ⊗ ∇(∇ · v) (20)

and

∇ ⊗ ∇ ⊗ v = ∇ ⊗ (∇ ⊗ v)∗ + 1

3
∇(∇ · v) ⊗ 1 (21)

Note that v⊗∇⊗∇ enjoys a symmetry in the second and last entry, while this is not the case with (v⊗∇)∗⊗∇.
The equation of continuity reads

ρ• ≡ ∂ρ

∂t
+ v · (∇ρ) = −ρ (∇ · v) (22)

where the dot denotes the material time derivative. Therefore, we have

(|∇ρ|2)• = 2|∇ρ||∇ρ|• = (∇ρ · ∇ρ)•

= 2∇ρ · (∇ρ)• �⇒ |∇ρ|• = e · (∇ρ)• with e ≡ ∇ρ

|∇ρ| (23)

(∇ρ)• = ∂∇ρ

∂t
+ v · ∇ ⊗ ∇ρ = ∇(

ρ• − v · ∇ρ
) + v · ∇ ⊗ ∇ρ = ∇ρ• − ∇ ⊗ v · ∇ρ

= − ∇ρ ∇ · v − ρ∇(∇ · v) − ∇ ⊗ v · ∇ρ

= −4

3
∇ρ ∇ · v − ρ∇(∇ · v) − (∇ ⊗ v)∗ · ∇ρ (24)

and

|∇ρ|• = − |∇ρ|(∇ · v + e · ∇ ⊗ v · e) − ρ e · ∇(∇ · v) (25)

∇ · v = −ρ•

ρ
, ∇(∇ · v) = − 1

ρ
(∇ρ)• − 1

ρ
(∇ ⊗ v)∗ · ∇ρ + 4ρ•

3ρ2∇ρ (26)
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3.2 Viscous stresses

First, we deal with a linear compressible material. Its viscous stresses of second and third order are given by
the full set of hemitropic functions of the first and second velocity gradient ( cf. [10], Eqs. (96), (97), where
α8 = α9 in our notation because the stresses are derived from a dissipation potential):

T2v = sym
[
α1 (∇ · v) 1 + α2 v ⊗ ∇ + α8 ε : v ⊗ ∇ ⊗ ∇

]
(27)

T3v = sym[23]
[
α3 1 ⊗ ∇(∇ · v) + α4

2

(
∇(∇ · v) ⊗ 1 + 1 ⊗ Δv

)

+α5 Δv ⊗ 1 + α6 v ⊗ ∇ ⊗ ∇ + α7 ∇ ⊗ v ⊗ ∇ + α9 ε · sym[v ⊗ ∇]
]

(28)

Here, ε denotes the third-order permutation tensor. The notation [23] indicates that the symmetry is meant
with respect to the second and third entry. Introducing the results of the last subsection we separate the
contributions of isochoric flow and volume change:

T2v = sym

[
−

(
α1 + α2

3

) ρ•

ρ
1 + α2 (v ⊗ ∇)∗ + α8 ε : (v ⊗ ∇)∗ ⊗ ∇

]
(29)

T3v = sym[23]
[
α4

2
1 ⊗ (v ⊗ ∇)∗ · ∇ + α5 (v ⊗ ∇)∗ · ∇ ⊗ 1 + α6 (v ⊗ ∇)∗ ⊗ ∇

+ α7 (∇ ⊗ v)∗ ⊗ ∇ +
(
α3 + α4

6
+ α7

3
+ α6

3

)
1 ⊗

(
− 1

ρ
(∇ρ)• − 1

ρ
(∇ ⊗ v)∗ · ∇ρ + 4ρ•

3ρ2∇ρ

)

+
(α4

2
+ α5

3

)(
− 1

ρ
(∇ρ)• − 1

ρ
(∇ ⊗ v)∗ · ∇ρ + 4ρ•

3ρ2∇ρ

)
⊗ 1 + α9 ε · sym[v ⊗ ∇]∗

]
(30)

3.3 Elastic stresses

A material that is completely characterized by the constitutive laws of the last subsection would have a strange
behavior: Given a constant state of stress, it could change its volume without limit. Since this is not realistic,
we assume, that a deviation of the mass density ρ from some value ρ0 is accompanied by a storage of elastic
energy. Since we deal with second gradient materials, the strain energy per unit mass should not only depend
on the local mass density ρ but also on its spatial gradient ∇ρ. However, the principle of invariance under
superimposed rigid body modifications requires that not the direction but only the magnitude |∇ρ| of this
gradient is an admissible variable:

w = w(ρ, |∇ρ|), w• = ∂w

∂ρ
ρ• + ∂w

∂|∇ρ| |∇ρ|• (31)

The power of the elastic stresses per unit volume is then

πe = T2e : v ⊗ ∇ + T3e : ·v ⊗ ∇ ⊗ ∇ = ρw•

= −∂w

∂ρ
ρ2 ∇ · v − ∂w

∂|∇ρ| ρ
(
|∇ρ|(∇ · v + e · ∇ ⊗ v · e) + ρ e · ∇(∇ · v)

)
(32)

We infer

T2e = −
(

∂w

∂ρ
ρ2 + ∂w

∂|∇ρ| ρ |∇ρ|
)
1 − ∂w

∂|∇ρ| ρ |∇ρ| e ⊗ e (33)

T3e = − ∂w

∂|∇ρ| ρ2 sym[23][1 ⊗ e
]

(34)

The fluid is assumed to be materially uniform and free of stress at the mass density ρ0. We restrict our attention
to the case where |ρ − ρ0| and |∇ρ| are small, so that the following quadratic form is appropriate:

w = K

2ρ3
0

(
(ρ − ρ0)

2 + L2 |∇ρ|2 + 2 β L (ρ − ρ0) |∇ρ|
)

(35)
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Here, K > 0 denotes the modulus of compressibility, L a characteristic elastic length of the gradient material
and β a dimensionless parameter, which must satisfy |β| < 1 in order to make the strain energy positive
definite. We obtain the following elastic stresses:

T2e = −
(

ρ

ρ0

)2

︸ ︷︷ ︸
K

ρ0

(
ρ − ρ0 + β L |∇ρ|

)
1 −

(
ρ

ρ0

)
K

ρ0

(
β (ρ − ρ0) + L |∇ρ|

) L |∇ρ|
ρ0

(
1 + e ⊗ e

)
(36)

T3e = −
(

ρ

ρ0

)2

︸ ︷︷ ︸
K

ρ0

(
β (ρ − ρ0) + L |∇ρ|

)
L sym[23][1 ⊗ e

]
(37)

The underlined expression is of a smaller than the first order and shall be neglected. Moreover, we can replace
the underbraced expressions by 1. So we arrive at

T2e = − K

ρ0

(
ρ − ρ0 + β L |∇ρ|

)
1 (38)

T3e = −K L2

ρ0

(
β

ρ − ρ0

L|∇ρ| + 1

)
sym[23][1 ⊗ ∇ρ

]
(39)

3.4 Total stresses

We choose a parallel connection of the elastic and viscous stresses in the sense of Kelvin–Voigt:

T2 = T2v + T2e, T3 = T3v + T3e (40)

Moreover, we define the scalar field

u ≡ K

ρ0
(ρ − ρ0) (41)

and the two retardation times corresponding to the second- and third-order constitutive equation:

t2 ≡ α1

K
, t3 ≡ α3

K L2 (42)

The denominators ρ in the viscous stresses are replaced by ρ0. So we arrive at

T2 = sym
[
α2 (v ⊗ ∇)∗ + α8 ε : (v ⊗ ∇)∗ ⊗ ∇

]
−

(( α2

3K
+ t2

)
u• + u + βL|∇u|

)
1 (43)

T3 = sym[23]
[
α4

2
1 ⊗ (v ⊗ ∇)∗ · ∇ + α5 (v ⊗ ∇)∗ · ∇ ⊗ 1

+ α6 (v ⊗ ∇)∗ ⊗ ∇ + α7 (∇ ⊗ v)∗ ⊗ ∇
+1 ⊗ L2

( (
t3 + 1

K L2

(α4

6
+ α7

3
+ α6

3

))(
− (∇u)• − (∇ ⊗ v)∗ · ∇u

+ 4

3K
u•∇u

)
− β u

∇u

L|∇u| − ∇u

)

+ 1

K

(α4

2
+ α5

3

)(
−(∇u)• − (∇ ⊗ v)∗ · ∇u + 4

3K
u•∇u

)
⊗ 1 + α9 ε · sym[v ⊗ ∇]∗

]
(44)
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4 The incompressible fluid

Classical approachWe apply the constraint

ρ ≡ ρ0 �⇒ ∇ · v ≡ 0, ∇(∇ · v) ≡ 0, (v ⊗ ∇)∗ = v ⊗ ∇, (v ⊗ ∇)∗ · ∇ = Δv (45)

So no elastic energy w and no elastic stresses are needed. The viscous stresses reduce to

T2D = sym
[
α2 v ⊗ ∇ + α8 ε : v ⊗ ∇ ⊗ ∇

]
(46)

T3D = sym[23]
[
α4

2
1 ⊗ Δv + α5 Δv ⊗ 1 + α6 v ⊗ ∇ ⊗ ∇

+ α7 ∇ ⊗ v ⊗ ∇ + α9 ε · sym[v ⊗ ∇]
]

(47)

These stresses are endowed with the suffix D, because they are determined by the isochoric flow field. But
reaction stresses will also be present that do no work during any isochoric motion, namely

T2R = −p1, T3R = sym[23][1 ⊗ 2 q
]

(48)

Indeed

T2R : v ⊗ ∇ + T3R : ·v ⊗ ∇ ⊗ ∇ = −p1 : v ⊗ ∇ + 1 ⊗ 2 q : ·v ⊗ ∇ ⊗ ∇
= −p∇ · v + 2q · ∇ (∇ · v) ≡ 0 (49)

We take note of the fact that the determined stress contribution with the parameter α4 does no work during
any motion. So we may choose α4 = 0 and adapt the vector q. If we want to treat some boundary value
problem, we are confronted by the unknown scalar field p and the vector fields v and q. In general there is no
definite solution to such a problem. Therefore, we need a better description which will be presented in what
follows.

Advanced approachThere will hardly be any real material that is totally incompressible. However, the modulus
of compressibility K may be very high so that only small changes of mass density will occur. Such a behavior
has been described in the foregoing subsection. Wemay go now one step further and let K tend toward infinity.
The stresses and hence the values of u can only remain finite if K → ∞ implies ρ → ρ0. We obtain

T2 = sym
[
α2 (v ⊗ ∇) + α8 ε : (v ⊗ ∇) ⊗ ∇

]
− p1 (50)

T3 = sym[23]
[
α4

2
1 ⊗ Δv + α5 Δv ⊗ 1 + α6 v ⊗ ∇ ⊗ ∇

+ α7 ∇ ⊗ v ⊗ ∇ + α9 ε · sym[v ⊗ ∇] + 1 ⊗ 2q
]

(51)

with

p = t2 u
• + u + βL|∇u| (52)

2q = − L2
(
t3

(
(∇u)• + (∇ ⊗ v) · ∇u

)
+ β u

∇u

L|∇u| + ∇u

)
(53)

If we compare this with the total stresses T2D + T2R and T3D + T3R of the classical approach, we find a
perfect formal agreement. Such an agreement was already discovered in 1980 by Bertram [12] in the context
of simple materials. However, our result for second gradient fluids goes far beyond this finding. Here, the fields
p and q do not represent four unknown scalar functions but are derived from only one scalar function u. This
makes it possible to obtain information on the internal stresses, the surface tension and the forces acting on
fixed boundaries that is not available with the classical approach. The value of α4 is not arbitrary in this context
but gives rise to an independent stress contribution.

Note We study strictly isochoric motions. No viscoelastic volume change is allowed. Nevertheless, the limit
from the weakly compressible case allows the reduction to one function u. Its contribution to the stresses
makes use of four viscoelastic constants L , β, t2, t3 which describe the behavior under volumetric changes,
although these changes were eliminated by our limiting process.

If L = 0 is assumed, then the volumetric behavior is that of a simple material and q ≡ 0 is valid.
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5 Admissible ranges of the material constants

The remainder of this paper is restricted to materials with α8 = α9 = 0. So the underlined expressions in
the constitutive law (50), (51) are canceled and there is no coupling between the first and second gradient.
Only hemitropic material functions that are also isotropic remain. The stress power per unit volume of our
incompressible fluid then can be represented as follows:

πi = T2 : v ⊗ ∇ + T3 : · v ⊗ ∇ ⊗ ∇
= sym

[
α2 v ⊗ ∇] : v ⊗ ∇ + sym[23]

[
α5 Δv ⊗ 1 + α6 v ⊗ ∇ ⊗ ∇ + α7 ∇ ⊗ v ⊗ ∇

]
: · v ⊗ ∇ ⊗ ∇

= α2 sym
[
v ⊗ ∇] : sym [v ⊗ ∇] +

(
α5 + 1

10
(4α6 − α7)

)
Δv · Δv

+ 2

9
(2 α6 − α7)

(
v ⊗ ∇ ⊗ ∇ − 1

2
Δv ⊗ 1 − sym[23][∇ ⊗ v ⊗ ∇ − 1

2
1 ⊗ Δv

])

: ·
(
v ⊗ ∇ ⊗ ∇ − 1

2
Δv ⊗ 1 − sym[23][∇ ⊗ v ⊗ ∇ − 1

2
1 ⊗ Δv

])

+ 1

9
(α6 + α7)

(
v ⊗ ∇ ⊗ ∇ − 1

5
Δv ⊗ 1 + 2 sym[23][∇ ⊗ v ⊗ ∇ − 1

5
1 ⊗ Δv

])

: ·
(
v ⊗ ∇ ⊗ ∇ − 1

5
Δv ⊗ 1 + 2 sym[23][∇ ⊗ v ⊗ ∇ − 1

5
1 ⊗ Δv

])
(54)

These reformulations are based on the identities

v ⊗ ∇ ⊗ ∇ : · v ⊗ ∇ ⊗ ∇ = ∇ ⊗ v ⊗ ∇ : · ∇ ⊗ v ⊗ ∇ = ∇ ⊗ ∇ ⊗ v : · ∇ ⊗ ∇ ⊗ v (55)

and

v ⊗ ∇ ⊗ ∇ : · ∇ ⊗ v ⊗ ∇ = v ⊗ ∇ ⊗ ∇ : · ∇ ⊗ ∇ ⊗ v = ∇ ⊗ v ⊗ ∇ : · ∇ ⊗ ∇ ⊗ v (56)

The stress power is fully dissipated. This implies that the coefficients of the four quadratic expressions must
not be negative. So we obtain the following restrictions on the material constants:

α2 ≥ 0, α5 + 1

10
(4α6 − α7) ≥ 0, − α6 ≤ α7 ≤ 2α6 �⇒ α6 ≥ 0 (57)

However, it is necessary to prove that the three expressions that contain second derivatives of v are independent
of each other. The choice

v ⊗ ∇ ⊗ ∇ = sym[23][∇ ⊗ v ⊗ ∇] = e1 ⊗ (e1 ⊗ e1 − e2 ⊗ e2) − e2 ⊗ (e1 ⊗ e2 + e2 ⊗ e1) (58)

yields Δv = 0, and only the last one of the expressions differs from zero. The choice

v ⊗ ∇ ⊗ ∇ = −2 sym[23][∇ ⊗ v ⊗ ∇] = e1 ⊗ (e2 ⊗ e3 + e3 ⊗ e2) − e3 ⊗ (e1 ⊗ e2 + e2 ⊗ e1) (59)

yields Δv = 0, and only the second one of the expressions differs from zero. If we choose

v ⊗ ∇ ⊗ ∇ = 2 e1 ⊗ 1 − sym[23][1 ⊗ e1
] �⇒ Δv = 5 e1, (60)

then only the first expression differs from zero.
No restrictions can be imposed on the material parameter α4 since it does not enter the stress power.
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6 An example: flow between cylinders with free surface

The fluid is contained between two concentric cylinders the axis of which is the vertical z-axis of a cylindrical
coordinate system {r, φ, z}. The inside and outside cylinders undergo steady state rotations with angular
velocities

r = ri : ωi = ω sin ε, r = ro : ωo = ω cos ε �⇒ ω2 = ω2
i + ω2

o (61)

The case ε = π/4 induces a rigid body rotation of the fluid, while ε = π/2 describes a stirring process. The
components of all fields shall be independent of φ. We assume adhesion of the fluid at the walls and a free
surface near the plane z = 0. It will turn out that we must take into account a primary and a secondary flow
pattern:

v = vp + vs, vp = v(r, z) eφ, vs = vr (r, z) er + vz(r, z) ez (62)

The first velocity gradients are

vp ⊗ ∇ = v,r eφ ⊗ er − v

r
er ⊗ eφ + v,z eφ ⊗ ez (63)

vs ⊗ ∇ = vr ,r er ⊗ er + vr

r
eφ ⊗ eφ + vz,z ez ⊗ ez + vr ,z er ⊗ ez + vz,r ez ⊗ er (64)

The primary flow is isochoric since vp · ∇ = vp ⊗ ∇ : 1 = 0. The secondary flow is only isochoric if

0 = vs · ∇ = vr ,r +vr

r
+ vz,z (65)

is valid. This is guaranteed if we derive the velocity components from a function y(r, z):

vr = ∂y(r, z)

∂z
, vz = − y(r, z)

r
− ∂y(r, z)

∂r
⇐⇒ vs = eφ × ∇(ry)

r
(66)

We introduce the abbreviation

D ≡ ∂2

∂r2
+ 1

r

∂

∂r
− 1

r2
+ ∂2

∂z2
(67)

Then,

vs ⊗ ∇ = y,r z er ⊗ er + y,z
r

eφ ⊗ eφ −
(
y,r z + y,z

r

)
ez ⊗ ez

+ y,zz er ⊗ ez −
(
Dy − y,zz

)
ez ⊗ er (68)

The second velocity gradients become

vp ⊗ ∇ ⊗ ∇ = v,rr eφ ⊗ er ⊗ er −
(v,r

r
− v

r2

) (
er ⊗ eφ ⊗ er

+ er ⊗ er ⊗ eφ − eφ ⊗ eφ ⊗ eφ

)
+ v,zz eφ ⊗ ez ⊗ ez + v,r z

(
eφ ⊗ er ⊗ ez + eφ ⊗ ez ⊗ er

)
−v,z

r

(
er ⊗ eφ ⊗ ez + er ⊗ ez ⊗ eφ

)
(69)

vs ⊗ ∇ ⊗ ∇ = y,rr z er ⊗ er ⊗ er − (
Dy − y,zz

)
,r ez ⊗ er ⊗ er

+
( y,r z

r
− y,z

r2

) (
er ⊗ eφ ⊗ eφ + eφ ⊗ er ⊗ eφ + eφ ⊗ eφ ⊗ er

)

−1

r

(
Dy − y,zz

)
ez ⊗ eφ ⊗ eφ

+ y,zzz er ⊗ ez ⊗ ez −
(
y,r zz

+ y,zz
r

)
ez ⊗ ez ⊗ ez + y,r zz

(
er ⊗ er ⊗ ez + er ⊗ ez ⊗ er

)
−(

Dy − y,zz
)
,z

(
ez ⊗ er ⊗ ez + ez ⊗ ez ⊗ er

)
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+ y,zz
r

(
eφ ⊗ eφ ⊗ ez + eφ ⊗ ez ⊗ eφ

)
(70)

Then,

Δvp = vp ⊗ ∇ ⊗ ∇ : 1 = Δ
(
v eφ

) = Dv eφ (71)

Δvs = Δ
(
eφ × ∇(ry)

r

)
= Dy,z er −

(
Dy,r +Dy

r

)
ez = eφ × ∇(

r Dy
)

r
(72)

ΔΔvp = DDv eφ, ΔΔvs = eφ × ∇(r DDy)

r
(73)

The reaction stresses are governed by

p = p(r, z), q(r, z, φ) = qr (r, z)er (φ) + qφ(r, z)eφ(φ) + qz(r, z)ez (74)

We apply the constitutive equations (50), (51) without the underlined terms and obtain

X ≡ T2 − T3 · ∇ = α2 sym

[
v ⊗ ∇

]
− (α5 + α6)Δv ⊗ ∇

−
(α4

4
+ α7

2

)
∇ ⊗ Δ v −

(
p + q · ∇

)
1 − ∇ ⊗ q (75)

The shape of the free surface is characterized by

z = h(r) (76)

The vectors
g = ez − ∇h = ez − h′(r) er , n = g

|g| (77)

are normal to that surface which is free of stress.

7 A power series solution

Let ε be fixed. Then, vp, vs, p, q and h depend on ω in a nonlinear manner since the acceleration is a quadratic
expression of the velocities. The fields y, p, qr and qz as well as the function h are even functions of ω, while
v and qφ are odd. We express all the fields as power series of ω truncated after the terms of order ω2 (the order
symbol o has the property limω→0 o(ω2)/ω2 = 0):

v = ωv1 + o(ω2), y = ω2y2 + o(ω2), p = p0 + ω2 p2 + o(ω2) (78)

qr = qr0 + ω2qr2 + o(ω2), qφ = ωqφ1 + o(ω2), qz = qz0 + ω2qz2 + o(ω2) (79)

h = ω2h2 + o(ω2), g = ez − ω2h′
2 er + o(ω2) (80)

and hence on the free surface

|g| = 1 + o(ω2), n = g
|g| = ez − ω2h′

2 er + o(ω2) (81)

We will also use the notations

X = X0 + ωX1 + ω2X2 + o(ω2), S = S0 + ωS1 + ω2S2 + o(ω2) (82)

We discuss the walls r = ri and r = ro first. We need the following tensor

T3(rk, φ, z) · er = sym[23]
[
α4

2
1 ⊗ Δv + α5 Δv ⊗ 1 + α6 v ⊗ ∇ ⊗ ∇

+α7 ∇ ⊗ v ⊗ ∇ + 1 ⊗ 2q
]
(rk, φ, z) · er
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=
(

qr0 (2er ⊗ er + eφ ⊗ eφ + ez ⊗ ez) + qz0 er ⊗ ez

+ω
(α4

4
Dv1er ⊗ eφ + α5Dv1eφ ⊗ er

+α6

(
v1,rr eφ ⊗ er −

(v1,r

r
− v1

r2

)
er ⊗ eφ + v1,r z eφ ⊗ ez

)

+ α7

2

(
−

(v1,r

r
− v1

r2

)
(2eφ ⊗ er + er ⊗ eφ) + v1,rr er ⊗ eφ

+
(
v1,r z −v1,z

r

)
ez ⊗ eφ − v1,z

r
eφ ⊗ ez

)
+ qφ1er ⊗ eφ

)

+ω2
(α4

4

(
Dy2,z (2er ⊗ er + eφ ⊗ eφ + ez ⊗ ez) −

(
Dy2,r +Dy2

r

)
er ⊗ ez

)

+α5

(
Dy2,z er ⊗ er −

(
Dy2,r +Dy2

r

)
ez ⊗ er

)

+α6

(
y2,rr z (er ⊗ er − ez ⊗ ez) +

( y2,r z
r

− y2,z
r2

)
(eφ ⊗ eφ − ez ⊗ ez)

+y2,r zz er ⊗ ez − (Dy2,r −y2,r zz )ez ⊗ er
)

+ α7

2

(
2y2,rr z er ⊗ er − y2,rr z ez ⊗ ez +

( y2,r z
r

− y2,z
r2

)
(2eφ ⊗ eφ − ez ⊗ ez)

−(Dy2,r −2y2,r zz )er ⊗ ez + 2y2,r zz ez ⊗ er + y2,zzz ez ⊗ ez
)

+ qr2 (2er ⊗ er

+ eφ ⊗ eφ + ez ⊗ ez) + qz2 er ⊗ ez
))

(rk, φ, z) + o(ω2) k = i, o (83)

The tensor T that acts on the inner wall shall be denoted by Ti and is obtained if all the underlined terms
above are dropped:

Ti = (T3(ri , φ, z) · er ) · (eφ ⊗ eφ + ez ⊗ ez) (84)

The stress vector that acts on the inner wall is

X(ri , φ, z) · er = −
(
p0 + 2qr0,r +qr0

r
+ qz0,z

)
er − qr0,z ez

+ ω

(
α2

2

(
v1,r −v1

r

)
− (α5 + α6)Dv1,r +

(α4

4
+ α7

2

) Dv1

r
+ qφ1

r

)
eφ

+ ω2
(

α2

2

(
2y2,r z er − (

Dy2 − 2y2,zz
)
ez

)
− (α5 + α6)

(
Dy2,r z er

−
(
Dy2,rr +Dy2,r

r
− Dy2

r2

)
ez

)

−
(α4

4
+ α7

2

) (
Dy2,r z er + Dy2,zz ez

)

−
(
p2 + 2qr2,r +qr2

r
+ qz2,z

)
er − qr2,z ez

)
+ o(ω2) (85)

The fluid is assumed to adhere to the walls. So the following boundary conditions at r = rk(k = i, o) must
be valid:

vp(rk, φ, z) = ωkrk eφ �⇒ v1(rk, φ, z) = ωk

ω
rk (86)

vs(rk, φ, z) = 0 �⇒ y2,z (rk, z) = 0 �⇒ y2(rk, z) = y2k = const,

y2,r (rk, z) = − y2k
rk

= const (87)

We will see later that we can choose y2i = y2o = 0 so that the boundary conditions reduce to

y2(rk, z) = 0, y2,r (rk, z) = 0 k = i, o (88)
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Moreover, we assume that no stress t̄e is doing work on the fluid at the walls. Therefore, the following boundary
condition must also hold:

0 = T3 : er ⊗ er = 2qr0(rk, z) er + ω
(
α5Dv1 + α6v1,rr −α7

(v1,r

r
− v1

r2

))
(rk, z)eφ

+ ω2
(((α4

2
+ α5

)
Dy2,z +(α6 + α7)y2,rr z +2qr2

)
er

+
(

− α5
Dy2
r

− (α5 + α6)Dy2,r +(α6 + α7) y2,r zz

)
ez

)
(rk, z) + o(ω2) (89)

The underlined term is zero due to (88).
We are now able to evaluate the power that the inner wall applies to the fluid.We replace the virtual velocity

by the actual velocity

v = ωv1(ri )eφ �⇒ v ⊗ ∇t = −ω
v1(ri )

ri
er ⊗ eφ (90)

in the surface integral of Eq. (6) and obtain

Π =
∫ (

v · X · er + Ti : v ⊗ ∇t

)
dA

= ωv1(ri )
∫ (

eφ · X · er − 1

ri
er · Ti · eφ

)
dA ≡ ω2v1(ri )2πri

∫ 0

−∞
τ1(z) dz (91)

At first glance, it may be confusing that the reaction quantity qφ1 appears in X as well as in Ti . But the two
contributions cancel each other and do not influence the power, as is only to be expected. The value of the
integral is not finite, but we will only be interested in the apparent shear stress τ1(z).

We consider the free surface next. Any function f on that surface can be described as follows:

f
(
r, z = h(r)

) = f (r, z = 0) + f,z (r, z = 0) h(r) + o
(
h(r)

)
= f (r, z = 0) + ω2 f,z (r, z = 0) h2(r) + o(ω2) (92)

The velocity there must be normal to n:

0 = n · v = n · vs = 1

r
(n × eφ) · ∇(ry)

(
r, z = h(r)

)

= −1

r
(er + ω2h′

2 ez) · ∇(rω2y2)(r, z = ω2h2(r)0) + o(ω2)

= −ω2 1

r
(ry2),r (r, z = 0) + o(ω2) (93)

So ry2 = K = const at the surface z = 0. We may, however, choose K = 0 because a constant value of ry2
gives no contribution to the velocity field. So we arrive at

y2(r, z = 0) = 0 �⇒ Dy2(r, z = 0) ≡
(
y2,rr + y2,r

r
− y2

r2
+ y2,zz

)
(r, z = 0) ≡ y2,zz (r, z = 0) (94)

and continuity implies yi = yo = 0, too, as was already mentioned. The dynamic prescriptions are

te = 0, t̄e = 0, Te = 0 (95)

and imply the following boundary conditions

0 = t̄e = T3 : n ⊗ n (96)

0 = te = X · n − S · ∇t with S = T − Te = T (97)

according to (12) and (17). We need

T3(r, φ, z = h(r)) · n =
(
qz0(1 + ez ⊗ ez) + qr0ez ⊗ er

)
(z = 0)
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+ ω

(
qφ1ez ⊗ eφ + α4

4
Dv1ez ⊗ eφ + α5Dv1eφ ⊗ ez

+ α6

(
v1,r z eφ ⊗ er − v1,z

r
er ⊗ eφ + v1,zz eφ ⊗ ez

)

+ α7

2

(
v1,r z er ⊗ eφ − v1,z

r
eφ ⊗ er + v1,zz ez ⊗ eφ

))
(z = 0)

+ ω2
((

qz0,z (1 + ez ⊗ ez) + qr0,z ez ⊗ er
)
h2

−
(
qr0(1 + er ⊗ er ) + qz0er ⊗ ez

)
h′
2

+
(
qz2(1 + ez ⊗ ez) + qr2ez ⊗ er

)

−α4

4

((
y2,r zz + y2,zz

r

)
(1 + ez ⊗ ez) − Dy2,z ez ⊗ er

)

+α5

(
Dy2,z er ⊗ ez −

(
y2,r zz + y2,zz

r

)
ez ⊗ ez

)

+ α6

(
y2,r zz er ⊗ er −

(
y2,r zz + y2,zz

r

)
ez ⊗ ez

+y2,zzz er ⊗ ez −
(
Dy2,z −y2,zzz

)
ez ⊗ er + y2,zz

r
eφ ⊗ eφ

)

+ α7

2

(
y2,r zz er ⊗ er − 2

(
y2,r zz + y2,zz

r

)
ez ⊗ ez

−
(
Dy2,z −2y2,zzz

)
(ez ⊗ er + er ⊗ ez)

−Dy2,z er ⊗ ez + y2,zz
r

eφ ⊗ eφ

))
(z = 0) + o(ω2) (98)

This gives us the following condition on the free surface

0 = T3(r, φ, z = h(r)) : n ⊗ n = 2qz0(r, z = 0) ez + ω
(
α5Dv1 + α6v1,zz

)
(r, z = 0)eφ

+ ω2
(
2
(
qz2 + qz0,z h2

)
ez − 2

(
qr0 ez + qz0 er

)
h′
2 +

(
(α6 + α7)y2,zzz +(α5 − α7)Dy2,z

)
er

−
(α4

2
+ α5 + α6 + α7

)(
y2,r zz + y2,zz

r

)
ez

)
(r, z = 0) + o(ω2) (99)

that can be decomposed into the following statements which will be useful later:

qz0(r, z = 0) = 0 �⇒ qz0,r (r, z = 0) = 0 (100)(
α5Dv1 + α6v1,zz

)
(r, z = 0) = 0 (101)(

(α6 + α7)y2,zzz +(α5 − α7)Dy2,z
)
(r, z = 0) = 0 (102)(

2
(
qz2 + qz0,z h2 − qr0h

′
2

)
−

(α4

2
+ α5 + α6 + α7

)(
y2,r zz + y2,zz

r

))
(r, z = 0) = 0 �⇒ (103)

(
2
(
qz2,r +qz0,r z h2 + (qz0,z −qr0,r )h′

2 − qr0h
′′
2

)

−
(α4

2
+ α5 + α6 + α7

)(
Dy2,zz −y2,zzzz

))
(r, z = 0) = 0 (104)

The vectors eφ and
e = eφ × n = er + ω2h′

2ez + o(ω2) (105)
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constitute an orthonormal basis in the tangential plane. We calculate the surface tensions in cuts normal to
each of these vectors, making use of the statements (100) to (104):

S · e = (T3 · n) · (1 − n ⊗ n) · e = T3 : n ⊗ e

= qr0(r, z = 0) ez + ω
(
α6v1,r z −α7

2

v1,z

r

)
(r, z = 0) eφ

+ ω2
(
qr2 ez + qr0,z h2 ez − qr0h

′
2er + 1

2
(α5 + α6 + α7)

y2,zz
r

er

+ 1

2
(α5 + 3α6 + 2α7)y2,r zz er

+
((α4

4
− α6 − α7

2

)
Dy2,z +(α6 + α7)y2,zzz

)
ez

)
(r, z = 0) + o(ω2) (106)

S · eφ = (T3 · n) · (1 − n ⊗ n) · eφ = T3 : n ⊗ eφ

= ω

(
qφ1 ez + α4

4
Dv1ez − α6

v1,z

r
er + α7

2

(
v1,r z er + v1,zz ez

))
(r, z = 0)

+ ω2
(
1

2
(α5 + α6 + α7)y2,r zz +1

2
(α5 + 3α6 + 2α7

) y2,zz
r

)
eφ(r, z = 0) + o(ω2) (107)

So the second-order tensor of the surface tension becomes

S = (S · e) ⊗ e + (S · eφ) ⊗ eφ (108)

The tangential derivative is

∇t = (
1 − n ⊗ n

) · ∇ = (
e ⊗ e + eφ ⊗ eφ

) · (er ∂

∂r
+ eφ

∂

r∂φ
+ ez

∂

∂z

)

= e
(

∂

∂r
+ω2h′

2
∂

∂z

)
+ eφ

∂

r∂φ
(109)

The underlined term may be disregarded since we apply ∇t on S that only depends on r and φ. So we obtain
the following two expressions which are needed in the second boundary condition:

S · ∇t = ∂(S · e)
∂r

+ (S · e)
r

∂e
∂φ

· eφ + ∂(S · eφ)

r∂φ

=
(
qr0,r +qr0

r

)
ez(r, z = 0)

+ ω α6
(
Dv1,z −v1,zzz

)
(r, z = 0) eφ

+ ω2
((

qr2,r +qr2
r

)
ez +

(
qr0,r z +qr0,z

r

)
h2 ez

+
(

−
(
qr0,r +qr0

r

)
er + qr0,z ez

)
h′
2 − qr0h

′′
2er

+ 1

2
(α5 + 3α6 + 2α7)(Dy2,zz −y2,zzzz )er + (α6 + α7)

(
y2,r zzz + y2,zzz

r

)
ez

+
(α4

4
− α6 − α7

2

)(
Dy2,r z +Dy2,z

r

)
ez

)
(r, z = 0) + o(ω2) (110)

and—with (104)

X(r, φ, z = h(r)) · n =
−

(
p0 + qr0,r +qr0

r
+ 2qz0,z

)
(r, z = 0)ez + ω

(
α2

2
v1,z −(α5 + α6)Dv1,z

)
(r, z = 0)eφ

+ω2
(

−
(
p2 + qr2,r +qr2

r
+ 2qz2,z

)
ez −

(
p0,z +qr0,r z +qr0,z

r
+ 2qz0,zz

)
h2ez
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+
((

p0 + qr0,r +qr0
r

+ 2qz0,z
)
er + qr0,z ez

)
h′
2 − qr0h

′′
2er

− α2

((
y2,r z + y2,z

r

)
ez − 1

2
y2,zz er

)

+
(
1

2

(α4

2
+ α5 + α6 + α7

)
y2,zzzz −1

2
(α4 + 3α5 + 3α6 + 2α7)Dy2,zz

+
(α4

4
+ α7

2

)
DDy2

)
er

+
(α4

4
+ α5 + α6 + α7

2

)(
Dy2,r z +Dy2,z

r

)
ez

)
(r, z = 0) + o(ω2) (111)

When making use of the advanced approach to the reaction stresses, we will restrict our discussion to the
case β = 0. Then, Eqs. (52), (53) become linear:

p = u + t2 u
• (112)

2q = − L2
(
∇u + t3

(
(∇u)• + (∇ ⊗ v) · ∇u

))
(113)

with
u• = v · ∇u, (∇u)• = (v · ∇)∇u (114)

We put
u(r, z) = u0(r, z) + ω2u2(r, z) + o(ω2) (115)

and find qφ ≡ 0 and

p = u0 + ω2
(
u2 + t2

(
y2,z u0,r −

(
y2,r + y2

r

)
u0,z

))
+ o(ω2) (116)

−2qr
L2 = u0,r +ω2

(
u2,r +t3

(
y2,z u0,rr +y2,r z u0,r

−
(
y2,r + y2

r

)
u0,r z −

(
Dy2 − y2,zz

)
u0,z

))
+ o(ω2) (117)

−2qz
L2 = u0,z +ω2

(
u2,z +t3

(
y2,z u0,r z +y2,zz u0,r

−
(
y2,r + y2

r

)
u0,zz −

(
y2.r z + y2,z

r

)
u0,z

))
+ o(ω2) (118)

The body force per unit mass is
b = −gez (119)

and the acceleration

a = (v · ∇)v = −ω2 v21

r
er + o(ω2) (120)

The balance of momentum reads

0 = ρ(b − a) + X · ∇ = ρ(b − a) + α2

2
Δv − (α5 + α6)ΔΔv − ∇(p + 2q · ∇)

= −ρgez − ∇
(
p0 + 2qr0,r +2

qr0
r

+ 2qz0,z
)

+ ω

(
α2

2
Dv1 − (α5 + α6)DDv1

)
eφ

+ω2
(

ρ
v21

r
er + α2

2

(
Dy2,z er −

(
Dy2,r +Dy2

r

)
ez

)

−(α5 + α6)
(
DDy2,z er −

(
DDy2,r +DDy2

r

)
ez

)

−∇
(
p2 + 2qr2,r +2

qr2
r

+ 2qz2,z
))

+ o(ω2) (121)
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8 Evaluation

Level 0 The fluid is at rest. ω = 0, v = 0, qφ = 0, h = 0. The boundary condition (97) together with (110),
(111) yields (

p0 + 2
(
qr0,r +qr0

r
+ qz0,z

))
(r, z = 0)ez = 0 (122)

so that the integration of the balance of momentum (121) implies

p0 + 2
(
qr0,r +qr0

r
+ qz0,z

)
= −ρgz (123)

The surface tension is according to (108)

S0 = qr0(r, z = 0)ez ⊗ er (124)

The boundary condition (89) at the walls gives

qr0(ri , z) = qr0(ro, z) = 0 (125)

and imply that S0 = 0 at the walls. The solution is governed by the reaction stresses, but the restrictions on
them remain poor if we use the classical approach. The advanced approach gives the additional information

p0 = u0, qr0 = − L2

2
u0,r , qz0 = − L2

2
u0,z (126)

If we impose the plausible postulate that |p0,z | remains finite with z → −∞, then we obtain the solution

p0 = u0 = −ρg
(
z − L exp(z/L)

)
, qr0 ≡ 0, qz0 = ρgL2

2

(
1 − exp(z/L)

)
, S0 ≡ 0 (127)

These functions give a useful qualitative description of the reaction stresses even if the elastic length L is not
known. The stress vectors and tensors acting on the inner wall are according to (83), (84), (85)

X0(ri , φ, z) · er = −(p0 + qz0,z )er = ρg
(
z − L

2
exp(z/L)

)
er ≡ σ0(z)er (128)

and

Ti0 = qz0 er ⊗ ez = ρgL2

2

(
1 − exp(z/L)

)
er ⊗ ez (129)

If the wall does not consist of a second gradient material and hence cannot accept the last mentioned contri-
bution, then a crust shell will exist and the additional stress vector

−Ti0 · ∇t = −qz0,z er = ρgL

2
exp(z/L)er (130)

is applied to the wall. Both contributions together yield the classical result

X0 · er − Ti0 · ∇t = ρgz er ≡ σ0(z)er (131)

The two possibilities are represented in Fig. 1 with the choice L = ro/2.

Level 1 Slow motion of the fluid. Terms with ω2 are neglected. There is no secondary flow, vS = 0. The free
surface remains at z = 0 since h = 0. The values of p, qr and qz are the same as in the state of rest. We
introduce the viscous length

l ≡
√
2(α5 + α6)

α2
(132)

and apply the abbreviations

ν ≡ α4

4α6
, −1 ≤ μ ≡ α7

α6
≤ 2, κ ≡ α5

α6
≥ μ

10
− 2

5
(133)
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Fig. 1 Pressure at rest (level 0) on the inner wall

The balance of momentum (121) yields the differential equation

1

l2
Dv1 − DDv1 = 0 (134)

The boundary conditions at the walls are according to (86) and (89)

v1(rk, z) = ωk

ω
rk, v1,rr (rk, z) + κ − μ

1 + κ

1

r

(
v1,r (rk, z) − ωk

ω

)
= 0 k = i, o (135)

The boundary conditions at the free surface are according to (99) and (97) together with (110), (111)
(

v1,zz + κ

1 + κ

(
v1,rr +v1,r

r
− v1

r2

))
(z = 0) = 0 (136)

(
− v1,z +l2

2 + κ

1 + κ

(
v1,rr z +v1,r z

r
− v1,z

r2

)
+ l2v1,zzz

)
(z = 0) = 0 (137)

If both cylinders rotate with the same angular velocity ωi = ωo = ω/
√
2, then we have a rigid body rotation

of the fluid with

v1 = 1√
2
r, Dv1 = 0, S1 = qφ1(r)ez ⊗ eφ (138)

The classical approach leaves qφ1(r) undetermined, while the advanced approach gives qφ1 ≡ 0 and hence
S1 ≡ 0.

Of greater interest is the stirring process with ωi = ω, ωo = 0. A particular solution of the differential
equation (134) that does not depend on z is

v1P(r) = Ar + B
1

r
+ C I1(r/ l) + DK1(r/ l) �⇒ Dv1P = 1

l2
(
C I1(r/ l) + DK1(r/ l)

)
(139)

where I1 and K1 are modified Bessel functions of the first and second kind. The four constants are determined
from the boundary conditions (135) but shall not be given here. The boundary condition (137) at z = 0 is
obviously satisfied. The condition (136) is only satisfied in rather special situations: Either κ = 0 or Dv1P = 0.
The latter possibility implies C = D = 0 and can only be valid also at the walls if μ = −1 is valid as can be
seen from (135). The corresponding solution that does not depend on z is well known from the Navier–Stokes
fluid:

v1N−St = ror2i
r2o − r2i

(
ro
r

− r

ro

)
(140)

In general we must superpose a solution v1H of the differential equation that depends on r and z and satisfies
the homogeneous boundary conditions. That solution becomes unique if we require v1,z → 0 with z → −∞.

The apparent shear stress τ1 according to (91) becomes

τ1(z) = α2

4πri

((
1 + 1 + μ

1 + κ

l2

r2i

)(
v1,r −v1

r

)
− l2Dv1,r

)
(r = ri , z) (141)
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Fig. 2 The velocity profiles of level 1 over r and z, respectively

Fig. 3 The components of the surface tension of level 1

Fig. 4 The apparent shear stress as a measure of the external power over z

Level 2More rapid motion of the fluid. Terms with ω2 are taken into account. The reaction stresses can be
eliminated from the balance of momentum (121) by applying the curl operation. The remaining φ-component
yields the differential equation

1

l2
DDY − DDDY = −1

r
v1 v1,z (142)

with the abbreviation

Y (r, z) ≡ (1 + κ)α6

2ρ
y2(r, z) ≡ α2l2

4ρ
y2(r, z) (143)

If we treat one of the special cases where v1 does not depend on z, then Y ≡ 0 is a possible solution. So the
evolution of a secondary flow is postponed to the level 4 (proportional to ω4) as is the case with the Navier–
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Stokes fluid. In general, however, a secondary flow of level 2 (proportional to ω2) is necessary to fulfill the
balance of momentum.

The boundary conditions at the walls are given by (88) and the z-component of (89):

Y (rk, z) = 0, Y,r (rk, z) = 0, rkY,rrr (rk, z) + 1 + 2κ

1 + κ
Y,rr (rk, z) = 0 k = i, o (144)

Two boundary conditions on the free surface are obtained from (94) and from (102):

Y (r, z = 0) = 0,

(
κ − μ

1 + κ

(
Y,rr z +Y,r z

r
− Y,z

r2

)
+ Y,zzz

)
(r, z = 0) = 0 (145)

The r -component of the boundary condition (97)with (110), (111) togetherwith (122) provides a third boundary
condition:

0 =
(
2(1 + κ)

l2
Y,zz −2(2ν+2κ+3+2μ)DY,zz +(2ν+2κ+4+3μ)Y,zzzz +(2ν+μ)DDY

)
(r, z = 0) (146)

The z-component of the boundary condition (97) at the free surface yields, if (123) is taken into account,

0 =
(
g h2 − 1

ρ

(
p2 + 2

(
qr2,r +qr2

r
+ qz2,z

))

− 4

l2

(
Y,r z +Y,z

r

)
+ 2(κ + 2 + μ)

1 + κ

(
DY,r z +DY,z

r

)

−2(1 + μ)

1 + κ

(
Y,r zzz +Y,zzz

r

))
(r, z = 0) (147)

and its derivative with respect to r reads

0 =
(
g h′

2(r) − 1

ρ

(
p2 + 2

(
qr2,r +qr2

r
+ qz2,z

))
,r

− 4

l2
(
DY,z −Y,zzz

) + 2(κ + 2 + μ)

1 + κ

(
DDY,z −DY,zzz

)

−2(1 + μ)

1 + κ

(
DY,zzz −Y,zzzzz

))
(r, z = 0) (148)

The r -component of the balance of momentum (121) gives

0 = v21

r
+ 2

l2
DY,z −2DDY,z − 1

ρ

(
p2 + 2

(
qr2,r +qr2

r
+ qz2,z

))
,r (149)

The last two equations provide information on the shape of the free surface:

g h′
2(r) =

(
v21

r
+ 2

l2
(
3DY,z −2Y,zzz

) − 2(2κ + 3 + μ)

1 + κ
DDY,z +2(κ + 2 + μ)

1 + κ
DY,zzz

+ 2(1 + μ)

1 + κ

(
DY,zzz −Y,zzzzz

))
(r, z = 0) (150)

If there is no secondary flow, then the classical result

h′
2(r) = v1(r, z = 0)2

gr
(151)

is valid.
Next we try to find p2, qr2 and qz2 by means of the advanced approach. We go back to (116), (117), (118)

and make use of (127):

p2 = u2 + 2ρ2gt2
(1 + κ)α6

(
Y,r +Y

r

)(
1 − exp(z/L) (152)
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Fig. 5 The function y2 that governs the secondary flow, min y2α6/ρr6o = −7 · 10−10

Fig. 6 The shape of the free surface: straight line: actual height, dashed line: classical expression (151) alone, dotted line:
Navier–Stokes

−2qr2
L2 = u2,r + 2ρ2gt3

(1 + κ)α6
(DY − Y,zz )

(
1 − exp(z/L)

)
(153)

−2qz2
L2 = u2,z + 2ρ2gt3

(1 + κ)α6

((
Y,r z +Y,z

r

)(
1 − exp(z/L)

) −
(
Y,r +Y

r

) 1

L
exp(z/L)

)
(154)

This implies

p2 + 2
(
qr2,r +qr2

r
+ qz2,z

)

= u2 − L2
(
u2,rr +u2,r

r
+ u2,zz

)
+ 2ρ2g

(1 + κ)α6
t3

(
Y,r +Y

r
+ 2L

(
Y,r z +Y,z

r

))
exp(z/L)

+ 2ρ2g

(1 + κ)α6

(
t2

(
Y,r +Y

r

)
− t3L

2
(
DY,r +DY

r

))(
1 − exp(z/L)

)
(155)

The z-component of the balance of momentum (121) gives

1

ρ

(
p2 + 2

(
qr2,r +qr2

r
+ qz2,z

))
,z = − 2

(
1

l2

(
DY,r +DY

r

)
− DDY,r −DDY

r

)
(156)
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Fig. 7 Stream lines of the secondary flow

We introduce the function

X (r, z) ≡
∫ z

ẑ=0
Y (r, ẑ) dẑ (157)

and can integrate between 0 and z—making use of (147)

1

ρ

(
p2 + 2

(
qr2,r +qr2

r
+ qz2,z

))
(r, z)

=
(
g h2 − 4

l2

(
Y,r z +Y,z

r

)
+ 2(κ + 2 + μ)

1 + κ

(
DY,r z +DY,z

r

)

−2(1 + μ)

1 + κ

(
Y,r zzz +Y,zzz

r

))
(r, z = 0)

− 2

(
1

l2

(
DX,r +DX

r

)
− DDX,r −DDX

r

)
(r, z)

+2

(
1

l2

(
DX,r +DX

r

)
− DDX,r −DDX

r

)
(r, z = 0) (158)

Introducing this into (155) we obtain a differential equation for u2. Noting that DY − Y,zz = Y,rr at the walls
r = ri and r = ro we obtain boundary conditions from the r -component of the condition (89):

u2,r (r = rk, z) = 2ρ

(
1

L2

1 + 2ν + κ + μ

1 + κ
Y,rr z − ρgt3

(1 + κ)α6
Y,rr

(
1 − exp(z/L)

))
(r = rk, z) k = i, o

(159)
If we introduce the result (127) into equation (103) and apply (154), we also obtain a boundary condition at
the free surface:

u2,z (r, z = 0) = − 2

L2 qz2(r, z = 0) = − ρ

L

(
g h2(r)+ 2

L

1 + 2ν + κ + μ

1 + κ

(
Y,r zz +Y,zz

r

))
(r, z = 0) (160)

Finally we have to impose the plausible postulate that u2,z → 0 with z → −∞.
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Fig. 8 The function u2 that governs the reaction stresses of level 2; the maximum and minimum values of u2/ρr2o are 0.026 and
0.011, respectively

9 Numerical results

We perform the computation with the geometrical parameter

ro
ri

= 20 (161)

and the material constants

ν = 0, κ = 3

2
, μ = 1

2
, l = L = ro

2
, t2 = t3 = 0 (162)

While v1P was given as an analytic expression, it is hardly possible to construct analytic solutions to the
boundary value problems of the functions v1H, Y and u2. So we apply a difference scheme with a square mesh
and a distance between adjacent nodes of (ro − ri )/15. The function v1H is rapidly decreasing so that it is
sufficient to evaluate the range −2(ro − ri )/3 ≤ z ≤ 0. On the other hand, the evaluation of Y and u2 requires
the larger range −4(ro − ri )/3 ≤ z ≤ 0. We choose as unknowns the values of v1H, Y and u2 at the nodes,
the normal derivatives of v1H at r = ri , r = ro and z = 0 and the normal derivatives of Y and DY at z = 0.
Figure 2a, b gives the velocity profiles of the primary flow at z = 0 and z = −∞ and the development over z,
respectively.

The components s1zφ , s1φr and s1rφ of the corresponding surface tension are given in Fig. 3.
The apparent shear stress τ1 on the inner wall is drawn in Fig. 4 both for the second gradient material and

the Navier–Stokes fluid.
An impression of the function y2(r, z) that describes the secondary flow can be found in Fig. 5.
The shape of the free surface can be seen in Fig. 6.
Figure 7 gives an idea of the stream lines of the secondary flow.
Figure 8 shows the graph of the function u2(r, z).
The surface tension of level 2 is well represented by

S2 = qr2ez ⊗ e = − L2

2
u2,r (r, z = 0)ez ⊗ e (163)

and is shown in Fig. 9. This is sufficiently precise since the contributions of the derivatives of y2 in equations
(106), (107) are vanishingly small.

The components of the stress vector of level 2 that act on the inner wall according to (85) are

σ2rr (z) ≡ er · X2(ri , φ, z) · er
=

(
− 2ρ

1 + ν + κ + μ/2

1 + κ
DY,r z −u2 + L2

2

(
2u2,rr +u2,r

r
+ u2,zz

))
(ri , z) (164)

σ2zr (z) ≡ ez · X2(ri , φ, z) · er
=

(
− 2ρ

( 1

l2
Y,rr +1 + ν + κ + μ/2

1 + κ
Y,rr zz −DDY

)
+ L2

2
u2,r z

)
(ri , z) (165)
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Fig. 9 The surface tension of level 2

Fig. 10 The stress components of level 2 acting on the inner wall

and are given in Fig. 10. While σ2zr is of local character, the influence of σ2rr extends to z = −∞. The tensor
Ti2 at the inner wall is not discussed since it is negligibly small everywhere.

The line integral in expression (16) indicates that the surface tension may induce a line force on the
boundaries of a free surface. However, equation (127) and Figs. 3 and 9 reveal that these forces of level 0, 1,
and 2 are zero both on the boundary r = ri and on the boundary r = ro.

10 Conclusions

Our investigation brought to light some interesting facts:
Finding 1 It turned out that a free surface of a second gradientmaterial—whatever be its constitutive behavior—
is endowed with a crust shell that is the basis of a surface tension of dimension force per length.
Finding 2 A scalar field p and a vector field q appear as reaction quantities with an incompressible second
gradient fluid. They are not uniquely determined by the available equations. But this unsatisfactory situation
can be defused by an advanced approach: The incompressible material is regarded as the limiting case of a
compressible one the stiffness and bulk viscosity of which tend to infinity. Then, p and q can be derived from
one single scalar function.
Finding 3Wepresented for the first time the elaboration of the full set of restrictions on thematerial parameters
that ensures nonnegative dissipation in the uncoupled case [α8 = α9 = 0 in Eqs. (50), (51)].

We discussed a stirring process as an example.
Finding 4 It turned out that not only the primary flow but also a secondary flow must be taken into account in
order to determine the shape of the free surface.
Finding 5 The reaction fields p and q remain vague unless the advanced approach is applied. This fact,
however, has no influence on the determination of the velocity field.
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