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Abstract A former publication has shown that some of the free boundary conditions of a third-gradient
continuum can be interpreted as the equilibrium conditions of forces and moments of a crust shell and of
edge beams. This was elaborated in the current (Eulerian) description. But it is obvious that a referential
(Lagrangian) description of these physical phenomena must look very similar. This is, indeed, demonstrated in
the paper at hand and disproves contrary claims in the literature. Moreover, the inductivist idea is omnipresent
in the literature that a fictitious cut and a free surface show identical behaviour. But this is only correct with
simple materials and not valid with higher gradient ones. We study a cube as a simple example where this
wrong approach predicts the following absurd interaction between a subcube and the remainder of the cube:
No actions at all appear on the fictitious cuts but there is one single force at the vertex of the subcube. Our
findings do not depend on any specific constitutive assumption.

1 The actual status of gradient theories

During the last two centuries, the theory of materials of continuum mechanics was to a large extent a synonym
of the theory of first-gradient materials, called simple materials [1,2]. In the last decades, however, theories of
materials with higher gradients, already studied by Piola [3] in the nineteenth century, received an increasing
attention, starting with Toupin [4] and Mindlin [5]. The basics of these theories can, e.g., be found in [6–11]
among many others and in the references therein. The paper at hand restricts the discussion to third-gradient
materials. Constitutive properties are only attributed to the bulk and not to surfaces or lines.

Unfortunately, even the most recent publications reveal the impression that the behaviour of gradient
materials is not yet understood. This is apparent from the following four facts.

1. A free surface behaves like a crust shell with cutting forces and cutting moments. They may be regarded as
enhanced surface tensions. This was shown in [12] but is not yet grasped.

2. The papers [13,14] compare the current (Eulerian) and the referential (Lagrangian) description. An action
in one description corresponds to an enormous cascade of actions in the other.

3. The papers [13,15,16] emphasize that fictitious cuts of a body show the same behaviour as free surfaces.
They assert that the interactions on a fictitious cut depend on the curvature of the cut and that additional
interactions appear at edges and vertices of the cut.

4. Three higher-order surface actions that are present on a fixed boundary as reactions can, of course, be
prescribed on free surfaces but do not appear anywhere in the literature.

In what follows, we denote the dimension of force by [F] and that of length by [L].
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To 1: In contrast to the approach of Gurtin and Murdoch [17] and its extension in [18], we do not attribute
constitutive laws to surfaces or edges of a body and do not introduce a surface energy. Nevertheless, it was
shown in [12] that a free surface of a third gradientmaterial behaves like a shell with cutting forces andmoments
that therefore have the character of reactions. This is an unavoidable consequence of the bulk behaviour. Such
a phenomenon is well known from the simplest gradient theory, namely the Kirchhoff plate.

To 2: The crust shell possesses a force tensor S and a moment tensor M of dimension [F/L] and [FL/L],
respectively, in the current description. If we switch to the referential description, we must find similar tensors
SR andMR . Moreover, we have surface load vectors t∗, ť∗, and t̂∗ of dimensions [F/L2], [FL/L2], and [FL2/L2]
in the current description and similar vectors t∗R , ť∗R , and t̂∗R in the referential description. The two descriptions
treat the same physical behaviour so that we expect the following simple connections.

S · e ds = SR · eR dsR, M · e ds = MR · eR dsR (1)

t∗ d A = t∗R d AR, ť∗ d A = ť∗R d AR, t̂∗ d A = t̂∗R d AR (2)

Here d A and d AR denote the current and referential surface element and ds and dsR are the current and
referential line element of a cut through the shell, while e and eR are the unit vectors normal to the cut in
the tangential plane. It is easy to understand why the cited papers present monstrous connections between
their current and referential actions. If we want to derive the boundary conditions of a free surface, we must
split the current derivative ∇ into a tangential part ∇T and a normal part dn in order to be able to apply the
divergence theorem of surfaces. The same split of the referential derivative∇R , however, causes the mentioned
difficulties since the normal derivatives of the two descriptions are not simply connected. In the paper at hand,
the solution of the problem is based on the introduction of an alternate split of ∇R that, indeed, produces the
simple connections (1), (2). Nevertheless, the reader will see that the proofs of these connections are by no
means trivial. The same procedure is applied to edge beams where patches of the surface meet. Here again, an
alternate split of ∇R allows a simple connection between the current and referential loads.

The mentioned cascades have inadmissible consequences. For example, a part of a current moment appears
to be represented by a referential double force. But forces, moments and hence also double forces have a
physical meaning. A moment acts on a rotation and a double force on a stretching. This cannot depend on the
description.
To 3: Three experts in continuummechanics published an impressive analysis of the genesis of scientific ideas
inmechanics [19]. They point out that the inductivist approach that simply extrapolates the previous knowledge
is not helpful to promote the understanding of new phenomena. They substantiate it with the famous example
of Bertrand Russell [20]: "Domestic animals expect food when they see the person who usually feeds them. We
know that all these rather crude expectations of uniformity are liable to be misleading. The man who has fed
the chicken every day throughout its life at last wrings its neck instead, showing that more refined views as to
the uniformity of nature would have been useful to the chicken."

Now, people have grown up with the belief that a fictitious cut and a free surface show the same behaviour
because they have in mind the theory of simple materials where the interaction is indeed described by Cauchy’s
stress vector in both cases. The idea that this must also be the case with higher gradient materials is obviously
inductivist. This could have been known since 150 years as even the simplest gradient theory, the Kirchhoff
plate, shows this different behaviour. What happens really on a free surface? One of its boundary conditions
will be shown to read in the current description

t∗ + S · ∇T = 0 (3)

It results from the application of the divergence theoremof surfaces and can be interpreted as the equilibrium
condition of force of a crust shell. The dimension of t∗ is [F/L2], that of S is [F/L], and that of ∇T is [1/L]. The
crust tensor S is only defined on the surface. Its tangential divergence is needed to carry aside the difference
t∗ = text − t of the external and internal surface forces. Where a patch of the surface ends, a force per unit
length S · e is applied to an edge beam or to a fixed boundary.

It is obvious that no such shells with cutting forces of dimension [F/L] can be found in the interior of a body.
They would only exist and apply their line force S · e to a free or fixed boundary as long as someone imagines
such a fictitious cut. The appearance of the force tensor S and its tangential derivative S · ∇T is an unavoidable
result of the application of the divergence theorem of surfaces. Since such a force tensor cannot be present on
a fictitious cut, it is obvious that the application of the divergence theorem of surfaces on such a fictitious cut
makes no sense, although it is widely practised in the literature. On the other hand, the application on a free
surface is a consequence of the fact that the tangential derivatives of a surface function are not independent but
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are determined by the function itself and require an integration by parts. This has been pointed out by Mindlin
[5].

To 4: The missing prescribed actions will be specified in Sect. 7.

2 Outline of the investigation

Geometrical tools are provided in Sect. 3. The most important topic is the construction of alternate splittings
of the referential derivative on crust shells and edge beams.

Section 4 introduces the true stress tensors T, T, and T of second, third, and fourth order that are dual to
the first three current derivatives of a virtual velocity field. There is no one-to-one correspondence between
the n-th derivatives in the current and referential description (if n > 1) and so there is also no such simple
correspondence between the mentioned tensors and their referential counterparts, the nominal stresses TR ,
TR , and TR .

The application of the divergence theorem in Sect. 5 transforms the volumetric representation of the internal
virtual power and reveals the role of the effective true stress tensors T̄ and T̄. There is again no one-to-one
correspondence between T̄ and its nominal counterpart T̄R . The surface terms reveal that the interaction on
any fictitious cut is performed by the local normal components of the three tensors T , T̄, and T̄.

The treatment of real boundaries is only possible if the current or referential derivative is decomposed so
that the tangential derivatives are made explicit. This is done in Sect. 6.

Section 7 clarifies the external actions that are admissible on free surfaces. Then, the boundary conditions
are derived, and some of them can only be obtained if the divergence theorem of surfaces is applied.

Section 8 compares the current and referential field and boundary quantities and reveals very simple
connections.

The subject of Sect. 9 is the crust shell. Some of the boundary conditions on a free surface can be interpreted
as the equilibrium conditions of forces and moments of a shell.

Section 10 shows that an edge where two patches of the surface meet has the behaviour of a beam.
Section 11 presents a simple example: A cube loaded by a single force at one vertex and by line forces,

moments, and double forces on three edges. A state of stress is presented that satisfies the field equation and
all boundary conditions. Finally, a subcube is considered, and the interaction with its surroundings along the
fictitious cuts is evaluated. It is shown that this interaction is erroneously claimed to happen by a single force
at the vertex alone if the divergence theorem of surfaces is applied to these fictitious cuts without any physical
reason.
A conclusion is found in Sect. 12.

The appendix contains proofs that belong to Sect. 8 but were to extensive to be included there.

3 Geometrical tools

3.1 Notation

A dot denotes a contraction. Multiple contractions are written a⊗b : e⊗ f = a ·e b · f , a⊗b⊗c : · e⊗ f⊗g =
a · e b · f c · g, a ⊗ b ⊗ c ⊗ d::e ⊗ f ⊗ g ⊗ h = a · e b · f c · g d · h. We define the Gibbsian vector of a tensor
by a ⊗ b|× = a × b = − 2 axi (a ⊗ b) and extend this definition to a ⊗ b ⊗ c|× = a × b ⊗ c. The transpose
of a tensor shall be defined by a ⊗ bT = b ⊗ a and a ⊗ b ⊗ cT = b ⊗ a ⊗ c. If direct notation becomes too
cumbersome, we switch to Cartesian components.

3.2 Current and reference placement

The position of a particle in the current and the reference placement is denoted by the position vectors r and
rR , respectively. The derivatives with respect to these positions are ∇ and ∇R . The local transplacement F and
its inverse G are defined by:

F = r ⊗ ∇R ≡ G−1 (4)
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and we have the connection

∇R = ∇ · F, ∇ = ∇R · G ∇Rk = ∇p f pk, ∇l = ∇Rqgql (5)

We need the gradient of F that is symmetric in the last two entries.

F ⊗ ∇R = r ⊗ ∇R ⊗ ∇R, fabc = facb ≡ fab∇Rc (6)

The ratio J of the volume elements and its derivative are

J = dV

dVR
= det F, d J = J F−T : dF = J GT : dF, ∇Rc J = Jgvu fuvc, ∇Rc

( 1

J

)
= − 1

J
gvu fuvc

(7)

Moreover,

dG = −G · dF · G, gab∇Rc = −gax fxycgyb (8)

3.3 Surfaces

Let n and nR denote the unit normal vectors and d A and d AR the areas of corresponding surface elements at
a point. We will need the projection tensors onto the tangential planes.

P = 1 − n ⊗ n, PR = 1 − nR ⊗ nR (9)

where 1 is the identity tensor. We make use of the well-known formula

n d A = J GT · nR d AR (10)

and introduce the following auxiliary quantity N

N ≡ J
d AR

d A
=

√
n · F · FT · n = 1√

nR · G · GT · nR

(11)

So we obtain the connections between the normal vectors and the areas of the surface elements:

n = NGT · nR, Q ≡ d AR

d A
= N

J
(12)

The introduction of the following modified normal vector

ñ = G · n = NG · GT · nR (13)

and the following modified projection tensor

P̃ = G · P · F = 1 − G · n ⊗ n · F = 1 − N ñ ⊗ nR (14)

will turn out to be of utmost importance. Note that ñ is not a unit vector and that the tensor P̃ is not symmetric.
The following identities will also be needed.

N ñ · nR = 1, nR · P̃ = 0, P̃ · ñ = 0 (15)

P̃ · PR = PR PR · P̃ = P̃, P̃ · P̃ = (1 − N ñ ⊗ nR) · (1 − N ñ ⊗ nR) = 1 − N ñ ⊗ nR = P̃
(16)

G · GT − ñ ⊗ ñ = G · GT − ñ ⊗ NnR · G · GT = P̃ · G · GT (17)
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3.4 Tangential derivatives

When treating surfaces, it is useful to split the spatial derivative into a tangential and a normal part.

∇ = ∇T + n dn, ∇R = ∇RT + nR dRn (18)

We note PR · FT · n = N PR · nR = 0 and obtain

∇T = P · ∇, ∇RT = PR · ∇R = PR · FT · ∇ = PR · FT · ∇T (19)

and also

dRn = nR · ∇R, dn = n · ∇ = n · GT · FT · ∇ = ñ · ∇R (20)

The last identity reveals the benefit of the vector ñ. Note that ñ is not normalized and hence dn is not a
directional derivative in the reference placement in contrast to dRn .

The key to a successful definition of referential quantities is the introduction of an oblique decomposition
of the referential derivative. We note (15) and (14) and find

∇RT · P̃ = ∇R · P̃ = ∇R · (1 − N ñ ⊗ nR) = ∇R − N (ñ · ∇R) nR = ∇R − N nR dn (21)

and hence

∇R = ∇RT · P̃ + N nR dn (22)

Let δv = δṙ be a virtual velocity field. We represent its first and second derivative with the help of this
decomposition.

δv ⊗ ∇R = δv ⊗ ∇RT · P̃ + N
(
dn δv

) ⊗ nR (23)

δv ⊗ ∇R ⊗ ∇R = δv ⊗ ∇R ⊗ ∇RT · P̃ + Ndn
(
δv ⊗ ∇R

) ⊗ nR (24)

with

dn
(
δv ⊗ ∇R

) = (ñ · ∇R)(δv ⊗ ∇R) = (ñ · ∇Rδv) ⊗ ∇R − (δv ⊗ ∇R) · (ñ ⊗ ∇R)

= (
dnδv

) ⊗ ∇R − (δv ⊗ ∇R) · (
ñ ⊗ ∇RT · P̃ + Ndnñ ⊗ nR

)

= (
dnδv

) ⊗ ∇RT · P̃ + N
(
d2nδv

) ⊗ nR − δv ⊗ ∇RT · P̃ · (
ñ ⊗ ∇RT · P̃ + Ndnñ ⊗ nR

)

−N
(
dnδv

) ⊗ nR · (
ñ ⊗ ∇RT · P̃ + Ndnñ ⊗ nR

)
(25)

So we arrive at

δv ⊗ ∇R ⊗ ∇R =
(
δv ⊗ ∇RT · P̃ + N

(
dn δv

) ⊗ nR

)
⊗ ∇RT · P̃

+N
((
dnδv

) ⊗ ∇RT · P̃ + N
(
d2nδv

) ⊗ nR − δv ⊗ ∇RT · P̃ · (ñ ⊗ ∇RT · P̃ + Ndnñ ⊗ nR
)

−N
(
dnδv

) ⊗ nR · (
ñ ⊗ ∇RT · P̃ + Ndnñ ⊗ nR

)) ⊗ nR (26)

The following identity will later be needed.
(
(δv ⊗ ∇T ) · X) ⊗ ∇T = ´

(δv ⊗ ∇T ) · X ⊗ ∇T + (δv ⊗ ∇T ) · (X́ ⊗ ∇T )

=
(
XT · ((δv ⊗ ∇T ) ⊗ ∇T

)T )T + (δv ⊗ ∇T ) · (
X ⊗ ∇T

)
(27)

Here X is any second-order tensor. An accent indicates on which field the derivative is to be applied. We may
note ∇T · n = 0 and obtain an interesting special case.

0 =
(
(δv ⊗ ∇T ) · (n ⊗ n)

)
⊗ ∇T

=
(
n ⊗ n) · (

(δv ⊗ ∇T ) ⊗ ∇T
)T )T + (δv ⊗ ∇T ) · (

(n ⊗ n) ⊗ ∇T
)

(28)

The sum is zero, but the two single terms do not vanish separately. One should also keep in mind that
(δv ⊗ ∇T ) ⊗ ∇T is in general not symmetric in the last two entries. Therefore, the notation δv ⊗ ∇T ⊗ ∇T is
avoided.
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3.5 The boundary curve of a surface patch

The unit tangent vector s and the unit normal vector e in the tangential plane of such a curve are connected by

n = e × s, e = −n × s, s = n × e (29)

and a line element is dr = s ds or drR = sR dsR in the current and reference placement, respectively. If we
interpret the surface as a shell and want to discuss cutting loads, then we need the oriented cutting line element

eR dsR = −nR × drR = − 1

N
n · F × G · dr = −

( 1

N
n · F × G × n

)
· e ds ≡ N · e ds (30)

This can be rewritten to give the simple representation

eR dsR = N · e ds with N = Q PR · FT (31)

The proof is easy if we choose an orthonormal basis such that nR = e3. Then,

N = − 1

N
n · F × G × n = −NnR × G × GT · nR = − N (e1 × e2) × G × GT · e3

= N
(
e1 ⊗ e2 · G − e2 ⊗ e1 · G) × GT · e3

= N
(
e1 ⊗ (

(e2 · G) × (e3 · G)
) − e2 ⊗ (

(e1 · G) × (e3 · G)
))

= N

J

(
e1 ⊗ F · e1 + e2 ⊗ F · e2

) = Q PR · FT (32)

The field N has an interesting property: The planar part of its tangential divergence vanishes. To show this, we
recall the divergence theorem of a surface. If a field A satisfies A · n = 0 everywhere on the surface, then

∮
A · e ds =

∫
A · ∇T d A (33)

is valid for any part of the surface. Therefore,
∮

N · e ds =
∫

N · ∇T d A =
∮

eRdsR

=
∮

PR · eRdsR =
∫

PR · ∇RT d AR =
∫

Q(PR · ∇RT ) d A (34)

which implies

N · ∇T = Q (PR · ∇RT ) = −Q nR (nR · ∇RT ) (35)

The projection into the tangential plane of the reference placement yields indeed:

PR · Ń · ∇T = 0 (36)

The connection

dr = s ds = F · drR = F · sR dsR (37)

implies

L ≡ ds

dsR
=

√
sR · FT · F · sR = 1√

s · GT · G · s , sR = L G · s, s = 1

L
F · sR (38)

and hence

∂

∂ sR
= sR · ∇R = L s · GT · FT · ∇ = L s · ∇ = L

∂

∂ s
(39)
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The introduction of the following modified tangent vector

s̃ = 1

L
FT · s = 1

L2F
T · F · sR (40)

will turn out to be of importance. We find

s̃ · sR = 1, s̃ · ñ = 1

L
s · F · G · n = 1

L
s · n = 0, P̃T · s̃ = (

1 − NnR ⊗ ñ
) · s̃ = s̃ (41)

We introduce the projector onto the plane normal to s

Ps = 1 − s ⊗ s (42)

and may split the current derivative into the derivative in the direction of the curve and the derivative in the
plane normal to the curve.

∇ = s
∂

∂ s
+ ∇P with ∇P = Ps · ∇ (43)

Here again, it is useful to introduce a modified split of the referential derivative.

∇R = FT · ∇ = FT ·
(
s

∂

∂ s
+ ∇P

)
= s̃

∂

∂ sR
+ FT · ∇P (44)

4 True and nominal stresses

The internal virtual power of a whole body or of a subbody made of a third-gradient material is given by:

δ�int =
∫ (

T : δv ⊗ ∇ + T:· δv ⊗ ∇ ⊗ ∇ + T ::δv ⊗ ∇ ⊗ ∇ ⊗ ∇
)
dV (45)

We identify a second-order true stress tensor T (dimension [F/L2]), a third-order true stress tensor T ([FL/L2]),
and a fourth-order true stress tensor T ([FL2/L2]). T is symmetric due to the principle of invariance under
superimposed rigid body motions. We notice that only those parts of the tensors T and T that are symmetric in
the last two or three entries, respectively, enter the expression of the virtual power. So this expression cannot
give information on any remaining part. Therefore, it is reasonable to lay down the assumption that these
remaining parts do not exist and that T and T enjoy the same symmetries in the last entries as their dual virtual
velocity gradients.

The expression above is our only constitutive restriction. The topic of the paper at hand is nothing else but
the mathematical exploration of the behaviour of this constitutive model. No further assumption (like elasticity,
plasticity, fluidity, etc.) is laid down. Moreover, we will detect the existence of a crust shell on a free surface,
but this is not the consequence of any additional constitutive assumption on surfaces.

We want to describe the internal virtual power also in the reference placement where nominal instead of
true stresses appear, characterized by the index R.

δ�int =
∫ (

TR : δv ⊗ ∇R + TR : · δv ⊗ ∇R ⊗ ∇R + TR ::δv ⊗ ∇R ⊗ ∇R ⊗ ∇R

)
dVR (46)

We are interested in the connection between the true and nominal stresses. We notice (5) and start with

TR : δv ⊗ ∇R dVR = tR ik(δvi∇Rk) dVR = tR ik(δvi∇p) f pk dVR

= T2 : δv ⊗ ∇ dV = t2 i p(δvi∇p) dV = J t2 i p(δvi∇p) dVR (47)

�⇒ J t2 i p = tR ik f pk, J T2 = TR · FT (48)
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The index 2 indicates that this is not yet the full tensor T but only one contribution. Next we notice (5) and (6)
and study

TR : · δv ⊗ ∇R ⊗ ∇R dVR = tR ikl(δvi∇Rk∇Rl) dVR = tR ikl
(
(δvi∇p) f pk

)∇Rl dVR

=
(
tR ikl(δvi∇p∇q) f pk fql + tR ikl(δvi∇p) f pkl

)
dVR

= T3 : · δv ⊗ ∇ ⊗ ∇ dV + T3 : δv ⊗ ∇ dV

=
(
t3 i pq(δvi∇p∇q) + t3 i p(δvi∇p)

)
J dVR (49)

�⇒ J t3 i pq = tR ikl f pk fql , J t3 i p = tR ikl f pkl (50)

Finally, we discuss

TR ::δv ⊗ ∇R ⊗ ∇R ⊗ ∇R dVR = tR iklm(δvi∇Rk∇Rl∇Rm) dVR

= tR iklm

(
(δvi∇p∇q) f pk fql + (δvi∇p) f pkl

)
∇Rm dVR

= tR iklm

(
(δvi∇p∇q∇r ) f pk fql frm + (δvi∇p∇q) f pkm fql + (δvi∇p∇q) f pk fqlm

+(δvi∇p∇q) f pkl fqm + (δvi∇p) f pklm
)
dVR

=
(
T4::δv ⊗ ∇ ⊗ ∇ ⊗ ∇ + T4 : · δv ⊗ ∇ ⊗ ∇ + T4 : δv ⊗ ∇

)
dV

=
(
t4i pqr (δvi∇p∇q∇r ) + t4 i pq(δvi∇p∇q) + t4 i pδvi∇p

)
JdVR (51)

�⇒ J t4 i pqr = tR iklm f pk fql frm,

J t4 i pq = tR iklm
(
f pkm fql + fqlm f pk + f pkl fqm

)
, J t4 i p = tR iklm f pklm (52)

After all, we have the following connections between the true and the nominal stresses.

J tipqr = J t4 i pqr = tR iklm f pk fql frm (53)

J tipq = J t3 i pq + J t4 i pq = tR ikl f pk fql + tR iklm
(
f pkm fql + fqlm f pk + f pkl fqm

)
(54)

J tip = J t2 i p + J t3 i p + J t4 i p = tR ik f pk + tR ikl f pkl + tR iklm f pklm (55)

First we learn that there is no one-to-one correspondence between the current and referential stress tensors of
order two and three.

Second we note that tipq on the left-hand side of (54) is symmetric in p and q . But the second term on the
right-hand side does not enjoy this symmetry. Therefore, the first term cannot be symmetric, too. Instead, we
find the difference

tRiuv − tRivu = (tRiklugvw − tRiklvguw) fwkl (56)

The fact thatTR is not symmetric in the last two entries, in general, seems confusing at first sight. The properties
of the skew part cannot be inferred from the virtual power (46) since it does not enter this expression. But,
fortunately, this is not necessary at all since the skew part is fully determined by TR , F and F⊗ ∇R according
to (56). If we restrict our attention to second-gradient materials, then TR does not exist and TR is symmetric
anyhow.

5 True and nominal effective stresses

The internal virtual power may be reformulated by multiple application of the divergence theorem.

δ�int =
∫ (

(T · n) : · δv ⊗ ∇ ⊗ ∇ + (T̄ · n) : δv ⊗ ∇ + δv · T̄ · n
)
d A −

∫
δv · T̄ · ∇ dV (57)

=
∫ (

(TR · nR) : · δv ⊗ ∇R ⊗ ∇R + (T̄R · nR) : δv ⊗ ∇R + δv · T̄R · nR

)
d AR

−
∫

δv · T̄R · ∇R dVR (58)



The crust shell and the edge beams of third-gradient

We introduced the true and nominal effective stress tensors.

T̄ = T − T · ∇, T̄ = T − T̄ · ∇ (59)

T̄R = TR − TR · ∇R, T̄R = TR − T̄R · ∇R

t̄R ikl = tR ikl − tR iklm∇Rm, t̄R ik = tR ik − t̄R ikl∇Rl (60)

We are interested in the connection between the true and nominal effective stresses. We find with (6), (7) and
(53)

tipqr∇r =
(
J−1tR iklm f pk fql frm

)
∇Rsgsr

= J−1
(
−gvu fuvmtR iklm f pk fql + (tR iklm∇Rm) f pk fql + tR iklm f pkm fql

+tR iklm f pk fqlm + tR iklm f pk fql frmsgsr
)

(61)

where the underlined terms cancel each other and

t̄i pq = tipq − tipqr∇r = −J−1
(
(tR iklm∇Rm − tRikl) f pk fql − tR iklm f pkl fqm

)
(62)

and hence the connection

J t̄ipq = t̄R ikl f pk fql + tR iklm f pkl fqm (63)

The divergence yields

t̄i pq∇q = J−1
(
− gvu fuvl t̄R ikl f pk + (t̄R ikl∇Rl) f pk + t̄R ikl f pkl + t̄R ikl f pk fqlsgsq

− gvu fuvmtR iklm f pkl + (tR iklm∇Rm) f pkl + tR iklm f pklm + tR iklm f pkl fqmsgsq
)

(64)

t̄i p = tip − t̄i pq∇q = J−1
(
tR iklm f pklm + (t̄R ikl + tR iklm∇Rm) f pkl + (t̄R ik + t̄R ikl∇Rl) f pk

−(t̄R ikl∇Rl) f pk − t̄R ikl f pkl − (tR iklm∇Rm) f pkl − tR iklm f pklm
)

(65)

This expression reduces to a very simple one-to-one connection between the current and referential second-
order effective stress tensors, while we found no such connection with the third-order tensors (see (63)).

J t̄ip = t̄R ik f pk, J T̄ = T̄R · FT (66)

Noting (10) we obtain the force on a surface element in current and referential description.

T̄ · n d A = T̄R · J−1FT · n d A = T̄R · nR d AR (67)

If we restrict our attention to first-gradient (i.e. simple) materials, then T̄ = T, and we find the well-known
connection between the true and nominal Cauchy stress vectors. Now consider a second-gradient material. We
expect the coincidence of the additional terms.

(T̄ · n) : δv ⊗ ∇ d A = (T̄R · nR) : δv ⊗ ∇R d AR (68)

This can be proved as follows—note (63) with tRiklm ≡ 0

t̄i pqnqδvi∇pd A = 1

J
t̄R ikl f pk fql N gxqnRxδvi∇Rygyp

1

Q
dAR = t̄R ikl nRlδvi∇Rkd AR (69)

The interaction on a cut was restricted to the normal component of a second-order tensor in the context of a
simple material. Now we have in addition the normal component T̄ · n of a third-order tensor, which itself is
a second-order tensor. Its symmetric part acts on the symmetric part of the virtual velocity gradient δv ⊗ ∇
that describes a stretching. So it represents double forces. The skew part acts on the skew part of the virtual
velocity gradient that describes a spinning. So it represents singlemoments. It makes no sense to apply the same
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argument to the symmetric and skew part of δv ⊗ ∇R and to invent "referential double forces and moments"
without a one-to-one correspondence with the current ones since double forces and moments are physical
concepts.

Things become more complicated in the case of a third-gradient material. Then, we expect the following
coincidence. (

(T · n) : · δv ⊗ ∇ ⊗ ∇ + (T̄ · n) : δv ⊗ ∇
)
d A (70)

=
(
(TR · nR) : · δv ⊗ ∇R ⊗ ∇R + (T̄R · nR) : δv ⊗ ∇R

)
d AR (71)

It is obvious from (63) that the terms with the first and second virtual velocity gradient cannot be identified
separately in the current and the reference placement.

This time, we encounter also the normal component of a fourth-order tensor. This third-order tensor
represents triple forces and various kinds of double moments.

Let us now assume that the equation (57) is applied to a subbody that is surrounded by fictitious cuts. The
interactions across these cuts are seen to be T̄ ·n, T̄ ·n, and T ·n. It is not surprising that the interactions become
more and more intricate if higher gradients enter the constitutive description. Two facts should, however, be
noticed:

– The interactions depend only on the local orientation of the cut and not on its curvature.
– No additional contributions appear at edges or vertices of the boundary of a subbody if its surface is not
smooth.

Contrary claims are based on an inappropriate application of the divergence theorem of surfaces on fictitious
cuts. This point will be clarified in Sects. 7 and 11.

6 Decomposition of the derivatives on a boundary

We want to derive boundary conditions on a free surface. Beforehand, it is necessary to apply the split of the
first and second derivative of the virtual velocity provided in (23) and (26) to the expression (71).

The second integrand becomes

(T̄R · nR) : δv ⊗ ∇R = (T̄R · nR) : δv ⊗ ∇RT · P̃ + N (T̄R : nR ⊗ nR) · (
dnδv

)
(72)

The first integrand is:
(
TR · nR

) : · δv ⊗ ∇R ⊗ ∇R = (
TR · nR

) : · (
δv ⊗ ∇RT · P̃) ⊗ ∇RT · P̃

+(
TR · nR

) : ·
(
N

(
dn δv

) ⊗ nR

)
⊗ ∇RT · P̃

+N
(
TR · nR

) : · (
dnδv

) ⊗ ∇RT · P̃ ⊗ nR

−N 2(TR · nR
) : · (

dnδv
) ⊗ nR · (

ñ ⊗ ∇RT · P̃ + Ndnñ ⊗ nR
) ⊗ nR

−N
(
TR · nR

) : · (δv ⊗ ∇RT ) · P̃ · (ñ ⊗ ∇RT · P̃ + Ndnñ ⊗ nR) ⊗ nR

+N 2(TR · nR
) : · (

d2nδv
) ⊗ nR ⊗ nR

(73)

We rearrange that and note the symmetry of T :
(
TR · nR

) : · δv ⊗ ∇R ⊗ ∇R = (
TR · nR

) · P̃T : · (
δv ⊗ ∇RT · P̃) ⊗ ∇RT

+2N
(
TR : nR ⊗ nR

) · P̃T : (
dn δv

) ⊗ ∇RT

+N
(
TR · nR

) · P̃T : · (
dn δv

) ⊗ (
nR ⊗ ∇RT

)

+(
TR : nR ⊗ nR

) · P̃T : (
dn δv) ⊗ (∇RT N )

−N 2(TR : nR ⊗ nR
) : (

dnδv
) ⊗ nR · (ñ ⊗ ∇RT · P̃ + Ndnñ ⊗ nR

)

−N
(
TR : nR ⊗ nR

) : (δv ⊗ ∇RT ) · P̃ · (ñ ⊗ ∇RT · P̃ + Ndnñ ⊗ nR)

+N 2(TR : · nR ⊗ nR ⊗ nR
) · (

d2nδv
)

(74)
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The first term must be evaluated. We make use of (27) and replace the current notions by referential ones.

(TR · nR) · P̃T : ·((δv ⊗ ∇RT ) · P̃) ⊗ ∇RT

= (TR · nR) · P̃T : ·
((

P̃T · ((δv ⊗ ∇RT ) ⊗ ∇RT
)T )T + (δv ⊗ ∇RT ) · (

P̃ ⊗ ∇RT
))

=
(
P̃ · (TR · nR)T

)T · P̃T : ·(δv ⊗ ∇RT ) ⊗ ∇RT +
(
(TR · nR) · P̃T : (∇RT ⊗ P̃T )T

)
: δv ⊗ ∇RT

(75)

We are now able to reformulate the internal virtual power (58) and obtain

δ�int =
∫ (

tR · δv + ZR : δv ⊗ ∇RT + YR : · (δv ⊗ ∇RT ) ⊗ ∇RT

)
d AR

+
∫ (

ťR · dnδv + ŽR : dnδv ⊗ ∇RT

)
d AR +

∫
t̂R · d2nδv d AR −

∫
δv · T̄R · ∇R dVR (76)

with the following referential dynamic quantities.

tR = T̄R · nR (77)

ťR = N T̄R : nR ⊗ nR + N
(
TR · nR

) · P̃T : (
nR ⊗ ∇RT

) + (
TR : nR ⊗ nR

) · P̃T · (∇RT N )

−N 2(TR : nR ⊗ nR
) · P̃T · (∇RT ⊗ ñ) · nR − N 3(TR : · nR ⊗ nR ⊗ nR)(nR · dnñ) (78)

ZR =
(
T̄R · nR − N

(
TR : nR ⊗ nR

) · P̃T · (∇RT ⊗ ñ
)

−N 2(TR : · nR ⊗ nR ⊗ nR) ⊗ dnñ
)

· P̃T +
(
(TR · nR) · P̃T : (∇RT ⊗ P̃T )T )

· PR

(79)

t̂R = N 2TR : · nR ⊗ nR ⊗ nR, ŽR = 2N
(
TR : nR ⊗ nR

) · P̃T (80)

YR =
(
P̃ · (

TR · nR
)T)T · P̃T , yRipq = tRiklmnRm p̃pk p̃ql (81)

If the reference placement coincides with the current placement, then we have ñ = n, P̃ = P, N ≡ 1,
n · dnn = 0, (∇T ⊗ n) · n = 0, and the internal virtual power (57) becomes

δ�int =
∫ (

t · δv + Z : δv ⊗ ∇T + Y : · (δv ⊗ ∇T ) ⊗ ∇T

)
d A

+
∫ (

ť · dnδv + Ž : dnδv ⊗ ∇T

)
d A +

∫
t̂ · d2nδv d A −

∫
δv · T̄ · ∇ dV (82)

with the following current dynamic quantities.

t = T̄ · n, ť = T̄ : n ⊗ n + (
T · n) : (

n ⊗ ∇T
)

(83)

Z =
(
T̄ · n − (

T : n ⊗ n
) · (∇T ⊗ n

) − (
T : · n ⊗ n ⊗ n

) ⊗ dnn + (
T · n) : (∇T ⊗ P)T

)
· P (84)

t̂ = T : · n ⊗ n ⊗ n, Ž = 2
(
T : n ⊗ n

) · P, Y =
(
P · (

T · n)T )T · P (85)

The normal components T̄ · n, T̄ · n, and T · n depend only on the local value of n. The splitting, however,
creates the quantities ť and Z that depend also on the tangential derivative −C = n ⊗ ∇T of n, i.e. on the
symmetric local curvature tensor C.

The following properties will later be needed.

0 = ZR · nR, 0 = Z · n, 0 = YR · nR = nR · YT
R, 0 = Y · n = n · YT (86)
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The definition of Z and Y and hence also of ZR and YR is not unique. The following statement is a
consequence of the connection (28) of the first and second tangential derivative.

0 = (
T · n) · P : ·

((
n ⊗ n) · (

(δv ⊗ ∇T ) ⊗ ∇T
)T )T + (δv ⊗ ∇T ) · (

(n ⊗ n) ⊗ ∇T
))

=
(
n ⊗ n · (T · n)T

)T · P : ·(δv ⊗ ∇T ) ⊗ ∇T +
(
(T · n) · P : (∇T ⊗ (n ⊗ n)

)T)
· P : δv ⊗ ∇T

≡ Yadd : ·(δv ⊗ ∇T ) ⊗ ∇T + Zadd : δv ⊗ ∇T (87)

with

Yadd =
(
n ⊗ n · (T · n)T

)T · P (88)

Zadd =
(
(T · n) · P : (∇T ⊗ (n ⊗ n)

)T )
· P = T · n : n ⊗ (∇T ⊗ n) (89)

Any multiple of these additional contributions of Z and Y does not influence the current version (82) of the
internal virtual power. Special modified values are

Zmod = Z + Zadd =
(
T̄ · n − (

T : n ⊗ n
) · (∇T ⊗ n

) − (
T : · n ⊗ n ⊗ n

) ⊗ dnn
)

· P (90)

Ymod = Y + Yadd = (
T · n) · P (91)

These modified values were derived in [12] under the additional choice dnn = 0. In general, we will have
n · YT

mod 	= 0.

7 The boundary conditions of a free surface

Now imagine an extremely thin layer at the surface. It is loaded from the interior of the body by these dynamic
quantities, endowed with a negative sign. In case of a simple material, they reduce to a force per unit reference
area −tR = −TR · nR , and this must be compensated by an external force tR ext of equal amount. If we treat
gradient materials then we encounter, of course, also tensors of higher order as external loads. The virtual
power of all these external loads can be read from (76).

δ�ext =
∫ (

tRext · δv + ZRext︸ ︷︷ ︸ : δv ⊗ ∇RT + YRext︸ ︷︷ ︸ : · (δv ⊗ ∇RT ) ⊗ ∇RT

)
d AR

+
∫ (

ťRext · dnδv + ŽRext︸ ︷︷ ︸ : dnδv ⊗ ∇RT

)
d AR

+
∫

t̂Rext · d2nδv d AR +
∫

δv · �R(b − a) dVR + δ�add (92)

It has been supplemented by an additional contribution δ�add of line tractions and point forces that will be
specified later. The external action within the volume is given by the well-known contributions of the body
force b and the inertial force −a per unit mass.

The three underbraced external actions are those that are ignored in the literature as has been mentioned
under point 4 of the introduction. We meet them again at the end of this section.

The principle of virtual power postulates the equality of the internal and external virtual power of a body.
(An application to a subbody is vacuous since no external surface actions are prescribed for a subbody.) So we
arrive at the following statement.

0 = δ�ext − δ�int =
∫ (

t∗R · δv + Z∗
R : δv ⊗ ∇RT + Y∗

R : · (δv ⊗ ∇RT ) ⊗ ∇RT

)
d AR

+
∫ (

ť∗R · dnδv + Ž∗
R : dnδv ⊗ ∇RT

)
d AR

+
∫

t̂∗R · d2nδv d AR +
∫

δv ·
(
T̄R · ∇R + �R(b − a)

)
dVR + δ�add (93)
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with the differences

t∗R = tRext − tR, ť∗R = ťRext − ťR, t̂∗R = t̂Rext − t̂R,

Z∗
R = ZRext − ZR, Ž∗

R = ŽRext − ŽR, Y∗
R = YRext − YR (94)

By the way, if we consider fixed boundaries, then the external agents are reactions and all the differences
vanish.

The postulate (93) must be valid for any virtual velocity field δv that satisfies possible displacement
constraints. So we obtain the field equation

T̄R · ∇R + �R(b − a) = 0 (95)

and the boundary condition—note (80)—

0 = t̂∗R = t̂Rext − N 2TR : · nR ⊗ nR ⊗ nR (96)

on a free surface. Moreover, the vanishing of the differences t∗R , ť∗R , Z∗
R , Ž

∗
R , Y

∗
R of the actions on both sides of

the surface would obviously be sufficient but, unfortunately, is not necessary. The reason is that the tangential
derivatives of δv and dnδv are not arbitrary but are determined by the fields δv and dnδv on the free surface.
This difficulty was first detected 150 years ago in the context of the simplest second-gradient theory, namely
the Kirchhoff plate, and was treated by Thomson and Tait [21].

The remedy is the divergence theorem of the surface. It is applied twice to the first line and once to the
second line of (93).

∫ (
t∗R · δv + Z∗

R : δv ⊗ ∇RT + Y∗
R : · (δv ⊗ ∇RT ) ⊗ ∇RT

)
d AR

=
∫

δv ·
(
t∗R − Z∗

R · ∇RT +
((
Y∗
R · ∇RT

) · PR

)
· ∇RT

)
d AR

+
∮ (

δv ·
(
Z∗
R − (

Y∗
R · ∇RT

) · PR

)
+ δv ⊗ ∇RT : Y∗

R

)
· eR dsR (97)

∫ (
dnδv · ť∗R + Ž∗

R : dnδv ⊗ ∇RT

)
d AR

=
∫

dnδv ·
(
ť∗R − Ž∗

R · ∇RT

)
d AR +

∮
dnδv · Ž∗

R · eR dsR (98)

In this section, we restrict the discussion to the surface terms. The line terms are discussed in Sect. 10.
Since δv and dnδv are arbitrary on the surface, we infer the boundary conditions

t∗R + SR · ∇RT = 0 (99)

and

ť∗R + ŠR · ∇RT = 0 (100)

with the following two tensors

SR = −Z∗
R +

(
Y∗
R · ∇RT

)
· PR (101)

and

ŠR = −Ž∗
R (102)

We call them crust tensors since they are only defined on free surfaces. These crust tensors satisfy SR ·nR = 0
and ŠR · nR = 0 and hence

SR = SR · PR, ŠR = ŠR · PR (103)
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Noting (80), we find

ŠR = 2N
(
TR : nR ⊗ nR

) · P̃T − ŽR ext (104)

Next we want to evaluate SR and make use of (81), (79), (16) and (96).

yRipq∇Rs pRsq pRpz = (
tRiklmnRm p̃pk p̃ql

)∇Rs pRsq pRpz
= p̃pk(tRiklmnRm p̃ql)∇Rs pRsq pRpz + tRiklmnRm( p̃pk∇Rs)pRsq p̃ql pRpz
= p̃zk(tRiklmnRm p̃ql)∇Rs pRsq + tRiklmnRm p̃sl( p̃pk∇Rs)pRpz (105)

SR =
(
T̄R · nR − N

(
TR : nR ⊗ nR

) · P̃T · (∇RT ⊗ ñ
) − t̂Rext ⊗ dnñ

)
· P̃T

−
((

(TR · nR) · P̃T ) · ∇RT

)
· P̃T − ZR ext + (YR ext · ∇RT ) · PR (106)

If the reference placement coincides with the current placement, then we have

Š = 2
(
T : n ⊗ n

) · P − Žext (107)

S =
(
T̄ · n − (

T : n ⊗ n
) · (∇T ⊗ n

) − t̂ext ⊗ dnn − (
(T · n) · P) · ∇T

)
· P − Zext + (Yext · ∇T ) · P

(108)

The following observation is very important: The dimension of t∗R is [F/L2] and that of SR is [F/L]. The
dimension of ť∗R is [FL/L2] and that of ŠR is [FL/L]. So t∗R and ť∗R are the differences of forces and of double
forces or moments, respectively, per unit area of both sides of the surface. On the other hand, SR and ŠR
are forces and double forces or moments, respectively, per unit length. We will later compare some of these
quantities with the cutting loads of a shell and hence introduce the notion of a crust shell. SR and ŠR are only
defined on the free boundary. If we study fictitious cuts of the body, then we do not encounter such quantities
per unit length. They only appeared because we postulated the fulfilment of boundary conditions that only
make sense on a free boundary surface. This distinction would have been lost if we had mistakenly applied the
divergence theorem of surfaces not only to free surfaces but also to fictitious cuts. Then, we had the following
strange behaviour: Wherever a fictitious cut reaches the real boundary of the body, components of SR and ŠR
are set free but they only exist as long as we imagine this cutting surface. The problem is discussed again in
Sect. 11.2. Our remarks on fictitious cuts do not concern singular surfaces or lines in the interior of a body
where external loads are applied. The treatment of such surfaces is similar to that of a free boundary and shall
not be detailed here.

Finally we want to compare our representation of the boundary conditions with those that can be found in
the literature. We rewrite the equations (99) and (100) with the help of (94), (101), (102).

tR −
(
ZR − (YR · ∇RT ) · PR − ZR ext︸ ︷︷ ︸+(YR ext︸ ︷︷ ︸ ·∇RT ) · PR

)
· ∇RT = tR ext (109)

ťR −
(
ŽR − ŽR ext︸ ︷︷ ︸

)
· ∇RT = ťR ext (110)

A representation of this kind is indeed common in the literature, e.g. [5] and, with a different split of ∇R , [18],
page 28. We notice two aspects:

– The contributions of the underbraced terms are absent in the literature. But they allow a more complex
physical situation.

– The second-order tensors in the brackets are usually not recognized as surface quantities that are of different
dimension than the vectors on the right-hand sides and can be linked with the cutting loads of a shell.

8 The connection between the field and boundary quantities in current and referential description

If we choose the current placement as the reference placement, thenwe have to putF ≡ 1, N ≡ 1, ñ ≡ n ≡ nR ,
P̃ ≡ P ≡ PR , ∇ ≡ ∇R , d A ≡ d AR .
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First we compare the versions of the field equation.
(
T̄R · ∇R + �R(b − a)

)
dVR = (

T̄ · ∇ + �(b − a)
)
dV = 0 (111)

We apply the well-known identity

0 =
∫

n d A =
∫

N GT · nR
1

Q
dAR =

∫
(J GT ) · ∇R dVR �⇒ (J GT ) · ∇R = 0 (112)

and find with (66)

T̄R · ∇R dVR = (T̄ · J GT ) · ∇R dVR = ´̄T · J GT · ∇R
1

J
dV = T̄ · ∇ dV (113)

Moreover, �R = J� so that the current and the referential version of the field equation are indeed equivalent.
Next we compare the boundary conditions of the free surface.

t̂∗R d AR = t̂∗ d A = 0 (114)(
t∗R + SR · ∇RT

)
d AR = (

t∗ + S · ∇T
)
d A = 0 (115)

(
ť∗R + ŠR · ∇RT

)
d AR = (

ť∗ + Š · ∇T
)
d A = 0 (116)

with the crust tensors

SR = −Z∗
R +

(
Y∗
R · ∇RT

)
· PR, S = −Z∗ +

(
Y∗ · ∇T

)
· P (117)

and

ŠR = −Ž∗
R, Š = −Ž∗ (118)

The fact thatZ andY are not unique has no influence on the uniqueness of S since−Zadd+
(
Yadd ·∇T

)
·P = 0

is valid.
We are interested in the connection of the crust tensors. Therefore, we integrate (115) with (31)

0 =
∫ (

t∗R + SR · ∇RT
)
d AR =

∫
t∗R d AR +

∮
SR · eR dsR =

∫
t∗RQ d A +

∮
SR · N · e ds

=
∫ (

t∗ + S · ∇T
)
d A =

∫
t∗ d A +

∮
S · e ds (119)

Since e is an arbitrary vector in the tangential plane and (103) is valid, we can identify the tensors SR · N and
S. Equation (116) yields an analogous result. So we have

SR · N = S, ŠR · N = Š (120)

The connection of the tangential derivatives of the crust tensors can then be obtained from (103), (19), (36),
(31).

S · ∇T = (SR · N) · ∇T = ŚR · N · ∇T + SR · PR · (Ń · ∇T )

= QŚR · PR · FT · ∇T = QSR · ∇RT , Š · ∇T = QŠR · ∇RT (121)

So three more connections appear.

Qt∗R = t∗, Q ť∗R = ť∗ (122)

Q t̂∗R = t̂∗ = 0 (123)

We arrive at the following important observation: There exist simple one-to-one connections between the
versions of these five quantities that characterize the dynamic behaviour of a free surface.
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If we compare, e.g., the representations (106) and (108) of SR and S, then the validity of such simple
connections is by no means obvious. So we might wish to prove all these connections in an independent
manner. Consider, for example,

Qt∗R = QtR ext − QtR = t∗ = text − t ⇐⇒ QtR ext = text, QtR = t (124)

The last statement can be proved with the help of (66), (83), and (77).

t = T̄ · n = 1

J
T̄R · FT · NGT · nR = N

J
T̄R · nR = QtR (125)

In what follows, it is sufficient to ignore the external actions since they must, of course, satisfy the same
transformations as the internal ones.

Next we check (123) with (80)

Q t̂R = QN 2TR : nR ⊗ nR ⊗ nR = t̂ = T : n ⊗ n ⊗ n = 0 (126)

Qt̂Ri = QN 2tRiklmnRknRlnRm = t̂i = tipqr n pnqnr

= 1

J
N 3tRiklm f pk fql frmgupnRugvqnRvgwr nRw = QN 2tRiklmnRknRlnRm = 0 (127)

The following identity is a consequence of (14) and will now be needed.

P = F · P̃ · G = GT · P̃T · FT , psp = fsx p̃xygyp = pps = gup p̃vu fsv (128)

The second crust tensor (118) together with (80) was

ŠR = ŽR = 2N (TR : nR ⊗ nR) · P̃T , Š = 2(T : n ⊗ n) · P (129)

We ignore ŽR ext as has been announced. The correctness of the connection (120) Š = ŠR ·N = QŠR ·PR ·FT

can now easily be seen.

šis = 2 tipqr nqnr pps = 2
1

J
N 2tR iklm f pk fql frmgaqnRagbrnRbgup p̃vu fsv

= 2QNtR iklmnRlnRm p̃vk fsv = QšRiv pRvw fsw (130)

Finally, we want to find a connection between ZR and Z and between YR and Y. We identify some
corresponding terms of (76) and (82) and make use of (19) and (27).

(
Z : δv ⊗ ∇T + Y : ·(δv ⊗ ∇T ) ⊗ ∇T

)
d A

=
(
ZR : δv ⊗ ∇RT + YR : · (δv ⊗ ∇RT ) ⊗ ∇RT

)
d AR

= Q

(
ZR : (δv ⊗ ∇T ) · F · PR + YR : ·

(
(δv ⊗ ∇T ) · F · PR

)
⊗ ∇T · F · PR

)
d A

= Q

(
ZR · PR · FT : (δv ⊗ ∇T ) + YR · PR · FT : ·

(
(δv ⊗ ∇T ) · F · PR

)
⊗ ∇T

)
d A

= Q

(
ZR · PR · FT : (δv ⊗ ∇T ) +

(
F · PR · YT

R

)T · PR · FT : ·(δv ⊗ ∇T ) ⊗ ∇T

+
(
YR · PR · FT : (∇T ⊗ (PR · FT ))T

)
: δv ⊗ ∇T

)
d A

= Q

((
ZR · PR · FT + YR · PR · FT : (∇T ⊗ (PR · FT ))T

)
: δv ⊗ ∇T

+
(
F · PR · YT

R

)T · PR · FT : · (δv ⊗ ∇T ) ⊗ ∇T

)
d A (131)
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A comparison shows the connections

Z = Q
(
ZR · PR · FT + YR · PR · FT : (∇T ⊗ (PR · FT ))T

)

= Q
(
ZR · FT + YR · FT : (∇T ⊗ (PR · FT ))T

)
= ZR · N + YR · N : (∇T ⊗ (PR · FT ))T (132)

Y = Q
(
F · PR · YT

R

)T · PR · FT = Q
(
F · YT

R

)T · FT = 1

Q

(
NT · YT

R · N
)T

(133)

The projector PR can be omitted because of (86).
After all, the proofs of the connections S = SR ·N and ť = Q ťR are due. They are intricate and are therefore

postponed to the appendix.

9 The crust shell

9.1 The equilibrium of forces

We want to demonstrate that some of the boundary conditions of a free surface may be interpreted as the
equilibrium conditions of a shell. The differential equations (115)

0 = t∗ + S · ∇T = Q
(
t∗R + SR · ∇RT

)
(134)

had the consequence (119).

0 =
∫

t∗R d AR +
∮

SR · eR dsR =
∫

t∗ d A +
∮

S · e ds (135)

This can immediately be interpreted as an equilibrium condition of forces acting on a surface patch and on
its boundary. Here t∗R d AR = t∗ d A is the resultant force acting on an area element from the inside and the
outside, while SR · eR dsR = S · e ds represents the force on a line element of the boundary. So the first crust
tensors S and SR have to be interpreted as the current and referential force tensor of the shell, respectively. If
we study second-gradient materials, then this force tensor is the only cutting quantity of the crust shell. It has
been discussed in [22].

A third-gradient material body possesses in addition the boundary condition (116) that contains the second
crust tensor Š or ŠR . Its interpretation is more complicated. Therefore, we first remember further aspects of
the behaviour of shells.

9.2 The equilibrium of moments

The moments acting on an element of a surface patch or of its boundary may be represented by:

m∗ d A = m∗
R d AR = Qm∗

R d A (136)

and—note (31)—

M · e ds = MR · eR dsR = MR · N · e ds (137)

whereM andMR denote the current and referential moment tensor of the shell, respectively. So we must have

m∗ = Qm∗
R, M = MR · N (138)

The equilibrium condition of moments reads

0 =
∫ (

m∗ + r × t∗
)
d A +

∮ (
M · e + r × S · e) ds =

∫ (
m∗ + r × t∗ + (

M + r × S
) · ∇T

)
d A

=
∫ (

m∗
R + r × t∗R

)
d AR +

∮ (
MR · eR + r × SR · eR

)
dsR

=
∫ (

m∗
R + r × t∗R + (

MR + r × SR
) · ∇RT

)
d AR (139)



A. Krawietz

We have with (103)

(r × S
) · ∇T = r × Ś · ∇T + ŕ × S · ∇T (140)

ŕ × S · ∇T = (r ⊗ ∇T ) · ST ∣∣× = (P · ST )
∣∣× = −S

∣∣× (141)

ŕ × SR · ∇RT = (r ⊗ ∇RT ) · STR
∣∣× = (F · PR · STR)

∣∣× = −(
SR · FT )∣∣× (142)

We introduce the equilibrium condition of forces (134) and arrive at the equilibrium condition of moments.

0 = m∗ + M · ∇T − S
∣∣× = Q

(
m∗

R + MR · ∇RT − (
SR · FT )∣∣×

)
(143)

We note the representation (101) of the tensor SR and apply integration by parts.

SR · FT = −Z∗
R · FT + (

Y∗
R · ∇RT

) · PR · FT

= −Z∗
R · FT − Y∗

R :
(
∇RT ⊗ (PR · FT )

)T +
(
F · PR · Y∗ T

R

)T · ∇RT (144)

sRit fzt = −z∗Rit fzt + (
y∗
Ritq∇Rs

)
pRsq pRtp fzp

= −z∗Rit fzt − y∗
Ritq pRqs∇Rs

(
pRtp fzp

) +
(
fzp pRpt y

∗
Ritq

)
∇Rs pRsq (145)

Then, the equilibrium condition (143) with (86) becomes

0 = m∗
R +

(
Z∗
R · FT + Y∗

R :
(
∇RT ⊗ (PR · FT )

)T
)∣∣∣× +

(
MR +

(
F · Y∗ T

R

)∣∣∣×
)

· ∇RT (146)

9.3 The role of the second crust tensor

The boundary condition (100) with (102) was derived from (98):

0 = dnδv · (
ť∗R + ŠR · ∇RT

)
d AR = dnδv · (

ť∗ + Š · ∇T
)
d A (147)

We introduce a virtual angular velocity

ψ = n × dnδv (148)

and obtain a split of dnδv into stretching and spinning.

dnδv = dnδv · n n − n × ψ (149)

This also induces a split of the boundary condition.

0 = Qdnδv · n(
n · ť∗R + n · (ŠR · ∇RT )

) + Qψ ·
(
n × (

ť∗R + ŠR · ∇RT
))

= dnδv · n(
n · ť∗ + n · (Š · ∇T )

) + ψ ·
(
n × (

ť∗ + Š · ∇T
))

(150)

The first bracket works on a stretching and therefore represents a double force ttotal that must vanish.

0 = QtR total = Qn · ť∗R − QŠR : (n ⊗ ∇RT ) + Q(n · ŠR) · ∇RT

= ttotal = n · ť∗ − Š : (n ⊗ ∇T ) + (n · Š) · ∇T

(151)

The vector field n · Š of dimension [FL/L] represents a non-classical cutting quantity of the crust shell, namely
a double force per unit length. The scalar field n · ť∗ − Š : (n ⊗ ∇T ) is a double force per unit area acting in
the direction of n.
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The second bracket represents a moment vector mtotal in the tangential plane normal to n that must vanish
when multiplied with any ψ .

0 = QmR total = Qn × (
ť∗R + ŠR · ∇RT

) = Qn × ť∗R + QP · (ŠR · (∇RT ⊗ n)
)∣∣× + QP · (n × ŠR) · ∇RT

= mtotal = n × (
ť∗ + Š · ∇T

) = n × ť∗ + P · (
Š · (∇T ⊗ n)

)∣∣× + P · (n × Š) · ∇T (152)

We identify this statement with the tangential part of the equilibrium condition of moments (146) of a shell.

0 = P · m∗
R + P ·

(
Z∗
R · FT + Y∗

R : (∇RT ⊗ (PR · FT )
)T )∣∣∣× + P ·

(
MR + (

F · Y∗ T
R

)∣∣∣×
)

· ∇RT

= n × ť∗R + P · (
ŠR · (∇RT ⊗ n)

)∣∣× + P · (n × ŠR) · ∇RT

(153)

If we define the moment tensor of the crust shell by

MR = n × ŠR − (
F · Y∗ T

R

)∣∣× (154)

then we interpret the tangential part of the boundary condition that contains the second crust tensor as the
tangential part of the equilibrium condition of moments of the crust shell.

The current representation is:

M = n × Š + Y∗∣∣× (155)

The second term should originally read (P ·YT )T |× and could be simplified toY|× because of (86). An addition
of Yadd does not influence the tensor M since P · YT

add = 0 according to (88). So M does not depend on the
choice of Y.

The tangential part of the moment per unit area is seen to be:

P · m∗
R = n × ť∗R − P ·

(
Z∗
R · FT − ŠR · (∇RT ⊗ n) + Y∗

R :
(
∇RT ⊗ (PR · FT )

)T
)∣∣∣× (156)

We are also interested in the normal part ofm∗
R . We need

n ·
(
MR +

(
F · Y∗ T

R

)∣∣∣×
)

· ∇RT = n · (
n × ŠR

) · ∇RT = (n × n) · (ŠR · ∇RT ) − n ·
(
ŠR · (∇RT ⊗ n)

)∣∣∣×
(157)

The underlined term vanishes. So we obtain from (146)

n · m∗
R = −n ·

(
Z∗
R · FT − ŠR · (∇RT ⊗ n) + Y∗

R :
(
∇RT ⊗ (PR · FT )

)T
)∣∣∣× (158)

and finally the total moment per unit area.

m∗
R = n × ť∗R −

(
Z∗
R · FT − ŠR · (∇RT ⊗ n) + Y∗

R :
(
∇RT ⊗ (PR · FT )

)T
)∣∣∣× (159)

We note
(∇T ⊗ P

)T = −ń ⊗ ∇T ⊗ n − n ⊗ ∇T ⊗ ń (160)

and find the current representation

m∗ = n × ť∗ −
(
Z∗ − Š · (∇T ⊗ n) + Y∗ : (∇T ⊗ P

)T)∣∣∣×
= n ×

(
ť∗ − Y∗ : (∇T ⊗ n)

)
−

(
Z∗ − Š · (∇T ⊗ n)

)∣∣∣× (161)
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10 The edge beams

Wewant to show that the edges where two patches of the crust meet behave like beams and are therefore called
edge beams. We recall the edge terms of (97) and (98) with (101) and (102) and augment it by the virtual
power of a vector function hRext of dimension [F/L] and a tensor function HRext of dimension [FL/L] that
represent external loads on the edge beam per unit length. (This is part of the formerly announced additional
power δ�add.) The principle of virtual power yields the following postulate for one edge line.

0 =
∑ ∫ (

δv · (
Z∗
R − (Y∗

R · ∇RT ) · PR
) + δv ⊗ ∇RT : Y∗

R + dnδv · Ž∗
R

)
· eR dsR

+
∫ (

hRext · δv + HRext : δv ⊗ ∇R
)
dsR

=
∑ ∫ (

− δv · SR + δv ⊗ ∇RT : Y∗
R − dnδv · ŠR

)
· eR dsR +

∫ (
hRext · δv + HRext : δv ⊗ ∇R

)
dsR

=
∫ (

δv ·
(

−
∑

SR · eR + hRext

)
+

(
−

∑
ŠR · eR ⊗ ñ +

∑
ŜR + HRext

)
: δv ⊗ ∇R

)
dsR (162)

We introduced the second-order tensor—note (86)—

ŜR ≡ Y∗
R · eR = (

Y∗
R · eR

) · PR (163)

of dimension [FL/L]. The sums are to be extended over the two adjacent patches. (Indices are omitted.) The
equation can be reformulated with (41) and (44) by partial integration along the arc length sR .

0 =
∫

δv ·
(

−
∑

SR · eR + hRext

)
dsR +

∫ (
−

∑
ŠR · eR ⊗ ñ +

∑
ŜR + HRext

)
: ∂δv

∂sR
⊗ s̃ dsR

+
∫ (

−
∑

ŠR · eR ⊗ ñ +
∑

ŜR + HRext

)
: δv ⊗ ∇P · F dsR

=
∫

δv ·
(

−
∑

SR · eR + hRext − ∂

∂sR

( ∑
ŜR · s̃ + HRext · s̃

)
dsR

+
[( ∑

ŜR · s̃ + HRext · s̃
)

· δv
]sR1
sR0

+
∫ (

−
∑

ŠR · eR ⊗ ñ · FT +
∑

(ŜR · FT + HRext · FT
)

· Ps : δv ⊗ ∇P dsR (164)

The last line made use of ∇P = Ps · ∇P according to (43).
If the current placement is chosen as the reference placement, then the result reduces to

0 =
∫

δv ·
(

−
∑

S · e + hext − ∂

∂s

( ∑
Ŝ · s + Hext · s

))
ds

+
[( ∑

Ŝ · s + Hext · s
)

· δv
]s1
s0

+
∫ (

−
∑

Š · e ⊗ n +
∑

Ŝ · e ⊗ e + Hext · Ps

)
: δv ⊗ ∇P ds (165)

We made use of P · Ps = (e ⊗ e + s ⊗ s) · (e ⊗ e + n ⊗ n) = e ⊗ e and introduced

Ŝ ≡ Y∗ · e = (
Y∗ · e) · P (166)

One might raise the objection that the original orientation of the arc length of the two adjacent patches is
opposite. But this orientation has actually no influence on the above results since a reversal changes the sign
of d/dsR , s, and s̃ simultaneously.

Now we recall the equilibrium of forces of a beam element. It reads in current and referential description

0 =
(dp
ds

+ tL
)
ds =

( dp
dsR

+ tRL
)
dsR (167)
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where p is the cutting force of the beam (of dimension [F]) and tL or tRL is the force per unit length (of
dimension [F/L]) in current or referential description. We compare this with the conditions that emerge from
(164) or (165) when δv is arbitrary along the edge beam and find

tL ds =
(

−
∑

S · e + hext − ∂

∂s

(
Hext · s

))
ds

= tRLdsR =
(

−
∑

SR · eR + hRext − ∂

∂sR

(
HRext · s̃

))
dsR

=
(

−
∑

SR · eR + hRext − ∂

∂sR

( 1

L
HRext · FT · s

))
dsR (168)

We know already S · e ds = SR · eR dsR = SR · N · e ds. So we may choose the connections

L hext = hRext, LHext = HRext · FT (169)

We observe that the distributed force on the edge beam results from the force tensors in the two patches and
from an external force and the derivative of an external moment. The cutting force of the edge beam is seen to
be:

p = −
∑

Ŝ · s = −
∑

ŜR · s̃ = −
∑ 1

L
ŜR · FT · s (170)

The equality of the two descriptions is derived from (133) and (31) as follows.

ŜT ds = Y∗T · e ds = QF · Y∗T
R · PR · FT · e ds = F · Y∗T

R · N · e ds = F · Y∗T
R · eR dsR = 1

L
F · ŜTR ds

(171)

By the way, the interpretation of p and tL in [12], eqs. (67), (68) is not correct.
Nowwe note ñ ·FT = n and PR ·FT ·Ps = PR ·FT ·e⊗e+PR ·FT ·n⊗n = PR ·FT ·e⊗e+NPR · nR⊗n.

The underlined vector vanishes. When δv ⊗ ∇P is arbitrary along the edge beam, then we obtain from (164)
and (165)

0 =
(

−
∑

ŠR · eR ⊗ n +
∑

ŜR · FT · e ⊗ e + HRext · FT · Ps

)
dsR

=
(

−
∑

Š · e ⊗ n +
∑

Ŝ · e ⊗ e + Hext · Ps

)
ds (172)

The first contributions are equal because of (120) and (31), the second ones because of (171) and the third one
because of (169).

The skew part of δv⊗∇P describes an angular velocity and the vanishing of the skew part—or equivalently
of the negative vector—of the expression (172) is therefore an equilibrium condition of moments. It reads

0 = −
∑

n × Š · e +
∑

e × Ŝ · e + kext (173)

where we abbreviated the external line moment by

kext ≡ −Hext · Ps
∣∣× (174)

Now we have with (166)

− Y∗∣∣× · e = −Ŝ
∣∣× = −(

Ŝ · P)∣∣× = −(
Ŝ · (e ⊗ e + s ⊗ s)

)∣∣× = e × Ŝ · e + s × Ŝ · s (175)

and hence according to (155)

− n × Š · e + e × Ŝ · e = −M · e + Y∗
∣∣∣× · e + e × Ŝ · e = −M · e − s × Ŝ · s (176)

So we arrive at the condition

0 = −
∑

M · e − s ×
∑

Ŝ · s + kext (177)
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If no cuttingmoments (bending and torsional moments) are present in a beam, then the equilibrium ofmoments
of a beam element reads

0 = mLds + s ds × p = mRLdsR + (F · sR dsR) × p (178)

Here mL and mRL denote the moment per unit length (of dimension [FL/L]). If we note (170), then we see
that (177) is nothing but the equilibrium condition of moments of the edge bar if we put

mLds = −
∑

M · eds + kextds

= mRLdsR = −
∑

MR · eRdsR −
(
HRext · FT · Ps

)∣∣∣×dsR (179)

We see that the distributed moment on the edge beam results from the moment tensors in the two patches and
from an external moment.

We must also discuss the equilibrium at a vertex where several edge beams meet. The second line of (165)
with (170) yields

∑
edge beams

( − p + Hext · s
) + pvertex = 0 (180)

since δv is arbitrary at the vertex. The external force pvertex that may be applied at the vertex has the dimension
[F]. Its virtual power pvertex · δv is another part of δ�add.

Finally, we have to interpret the symmetric part of the condition (172).

0 =
(

−
∑(

ŠR · eR ⊗ n + n ⊗ ŠR · eR
) +

∑ (
ŜR · FT · e ⊗ e + e ⊗ ŜR · FT · e)

+HRext · FT · Ps + Ps · F · HT
Rext

)
dsR

=
(

−
∑(

Š · e ⊗ n + n ⊗ Š · e) +
∑ (

Ŝ · e ⊗ e + e ⊗ Ŝ · e) + Hext · Ps + Ps · HT
ext

)
ds (181)

The component in the direction of s yields

0 =
(

−
∑

(s · ŠR · eR) n +
∑

(s · ŜR · FT · e) e + s · HRext · FT · Ps

)
dsR

=
(

−
∑

(s · Š · e)n +
∑

(s · Ŝ · e) e + s · Hext · Ps

)
ds (182)

But this condition is already satisfied since it is identical with the vector product of s with the condition (173).
So only the projection of the equation (181) onto the plane normal to s yields an additional restriction. This
remaining tensor equation is equivalent to three scalar equations that describe the balance of double forces on
a line element of the edge beam.

11 An example: a cube under vertex and edge loads

11.1 Stresses in the cube and cutting loads in the crust shells and edge beams

We use the current description and Cartesian co-ordinates. The surfaces x = 0, y = 0, z = 0 of the cube are
fixed and the boundary conditions are v = dnv = d2nv = 0. The surfaces x = l, y = l, z = l are free, and
there are no external agents:

text = 0, ťext = 0, t̂ext = 0 (183)

Zext = 0, Žext = 0, Yext = 0 (184)

External loads are only applied at the vertex x = y = z = l and at the three edge beams that meet at the vertex
and are specified later.
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We will see that the following state of stress satisfies the field equation and all the boundary conditions.

txx = 0, txy = 2τ11 + 2τ12 (185)

txxx = 0, txyy = 3τ33 + 3τ21 (186)

txxy = 3τ42 + τ11(x − a), txyz = 3τ41 + 3τ33 + τ12(y + z − 2a) (187)

txxxx = 0, txyyy = 0, txxxy = 0 (188)

txxyy = τ21(x − a) (189)

txyyz = τ33(y + z − 2a) (190)

txxyz = τ41x + τ42(y + z) (191)

All the other components of the stress tensors T, T, and T are obtained from one of the following symmetry
transforms.

(x → y, y → x), (x → z, z → x), (y → z, z → y) (192)

(x → y, y → z, z → x), (x → z, z → y, y → x) (193)

So the state of stress is fully characterized by only seven parameters. The effective stresses become according
to (59)

t̄x xx = 0, t̄xyy = 2τ33 + 2τ21 (194)

t̄x xy = 2τ42 + τ11(x − a), t̄xyz = 2τ41 + τ33 + τ12(y + z − 2a) (195)

t̄x x = 0, t̄xy = τ11 + τ12 (196)

The homogeneous field equation T̄ · ∇ = 0 is satisfied since T̄ is constant.
We obtain the following dynamic quantities on any surface x = const . Greek indices α, β take the values

y and z.

t : ti = t̄i x : tx = 0, ty = tz = τ11 + τ12 (197)

ť : ťi = t̄i xx : ťx = 0, ťy = ťz = 2τ33 + 2τ21 (198)

Z : ziα = t̄iαx : zxy = zxz = 2τ42 + τ11(x − a) (199)

zzy = 2τ41 + τ33 + τ12(x + y − 2a) (200)

zyz = 2τ41 + τ33 + τ12(x + z − 2a) (201)

zyy = 2τ42 + τ11(y − a), zzz = 2τ42 + τ11(z − a) (202)

t̂ : t̂i = ti xxx = 0 (203)

Ž : žiα = 2tiαxx : žxy/2 = žxz/2 = 0 (204)

žzy/2 = τ33(x + y − 2a), ž yz/2 = τ33(x + z − 2a) (205)

ž yy/2 = τ21(y − a), žzz/2 = τ21(z − a) (206)

Y : yiαβ = yiβα = tiαβx : yxyy = yxzz = τ21(x − a) (207)

yxyz = yxzy = τ41x + τ42(y + z) (208)

yyyy = 0, yyyz = yyzy = τ41y + τ42(x + z) (209)

yyzz = τ33(x + z − 2a), yzyy = τ33(x + y − 2a) (210)

yzzz = 0, yzyz = yzzy = τ41z + τ42(x + y) (211)

If the considered surface is a fictitious cut through the cube, then we identify the following interactions across
this surface. The vector t ([F/L2]) applies shear stresses. The normal component ťx of the vector ť ([FL/L2])
represents a double force in the direction of x but does not appear here while the tangential components give
rise to moments. The symmetric part of the tensor Z ([FL/L2]) represents double forces and the vector of the
skew part moments. A double force in the direction of a vector g = gxex + gyey + gzez is given by:

Z : g ⊗ g = zyyg
2
y + zzzg

2
z + (zyz + zzy)gygz + zxygx gy + zxzgx gz (212)

So the components zyy, zzz, (zyz + zzy)/2, zxy/2, zxz/2 of the symmetric part are responsible for double
forces, the components of the skew part (zyz − zzy)/2, zxy/2, zxz/2 describe moments. Finally, the tensor Y
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([FL2/L2]) describes the action of triple forces or double moments. A triple force in the direction of a vector
g = gxex + gyey + gzez is given by:

Y : · g ⊗ g ⊗ g = yxyygx g
2
y + yxzzgx g

2
z + 2yxyzgx gygz

+(yzyy + 2yyyz)g
2
ygz + (yyzz + 2yzyz)gyg

2
z (213)

So the components yxyy/2, yxzz/2, yxyz, (yzyy + 2yyyz)/2, (yyzz + 2yzyz)/2 are responsible for triple forces,
while the remaining components yxyy/2, yxzz/2, yxyz, (yzyy − 2yyyz)/2, (yyzz − 2yzyz)/2 describe various
kinds of double moments.

If we put x = 0, then the surface under consideration is a fixed boundary and the mentioned actions are
reactions that are applied to the cube.

If the considered surface is a free boundary with the prescriptions (184), then we need the components of
the crust tensor Š that is here identical with Ž according to (118) and of the crust tensor S that is, according to
(117),

S = Z − A with A ≡ (Y · ∇T ) · P (214)

We find

aiα = yiαβ,β = yiαy,y +yiαz,z : (215)

axy = axz = ayy = azz = τ42, azy = ayz = τ33 + τ41 (216)

and therefore

sxy = sxz = τ42 + τ11(x − a) (217)

szy = τ41 + τ12(x + y − 2a), syz = τ41 + τ12(x + z − 2a) (218)

syy = τ42 + τ11(y − a), szz = τ42 + τ11(z − a) (219)

Next we compute the divergence of these tensors b ≡ S · ∇T and c ≡ Š · ∇T .

bx = sxy,y +sxz,z = 0, by = syy,y +syz,z = bz = szy,y +szz,z = τ11 + τ12 (220)

cx = šxy,y +šxz,z = 0, cy = šyy,y +šyz,z = cz = šzy,y +šzz,z = 2τ33 + 2τ21 (221)

We find b = t and c = ť, and we also have t̂ = 0. So the boundary conditions (96), (99), and (100) with (183)
of a free surface are also satisfied. Note that these results are independent of the position x of the surface. The
tensor S is the force tensor of the crust shell. We are also interested in the moment tensor according to (155)
with (184).

M = ex × Š − U with U ≡ Y
∣∣× (222)

uxα = yyzα − yzyα, uyα = −yxzα, uzα = yxyα (223)

So we obtain

−mxy = uxy = τ42(x + z) − τ33(x + y − 2a) + τ41y (224)

−mxz = uxz = −τ42(x + y) + τ33(x + z − 2a) − τ41z (225)

myy = −šzy − uyy = −2τ33(x + y − 2a) + τ41x + τ42(y + z) (226)

mzz = šyz − uzz = 2τ33(x + z − 2a) − τ41x − τ42(y + z) (227)

mzy = šyy − uzy = τ21(2y − x − a) (228)

myz = −šzz − uyz = −τ21(2z − x − a) (229)

Next we compute the divergence d ≡ M · ∇T .

dx = mxy,y +mxz,z = 0 (230)

dy = myy,y +myz,z = −dz = −mzy,y −mzz,z = −2τ21 − 2τ33 + τ42 (231)
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Furthermore, we need the vectors v ≡ S
∣∣× and w ≡ Z

∣∣×.

vx = syz − szy = τ12(z − y), vy = −sxz = −vz = −sxy = −τ42 − τ11(x − a) (232)

wx = zyz − zzy = τ12(z − y), wy = −zxz = −wz = −zxy = −2τ42 − τ11(x − a) (233)

The equilibrium condition of moments of the crust shell reads according to (143) with (161):

M · ∇T = S
∣∣× + ex × ť − Z

∣∣× (234)

It is easily checked that it is satisfied.
We must also check the balance of the double forces in the direction of the normal n = ex according to

(151).

0 = −n · ť + (n · Š) · ∇T = −ťx + šxy,y +šxz,z (235)

This is trivially satisfied here.
Next we consider the edge beamwith x = y = l. We characterize the contribution of the free surface x = l

of our cube to the cutting force of the beam by the index X and find from (170)

pX = YX : ez ⊗ ey, pX i = yX izy (236)

pX x = yX xzy = pX y = yX yzy = τ41l + τ42(l + z), pX z = yX zzy = 2τ42l + τ41z (237)

The equilibrium conditions of forces of the beam yield according to (167) and (168) with Hext · ez = 0

dpX

ds
= −tL X = SX · ey − hext X (238)

τ42 = dpX x

dz
= dpX y

dz
= sX xy − hext X x = sX yy − hext X y = τ42 + τ11(l − a) − hext X y (239)

τ41 = dpX z

dz
= sX zy − hext X z = τ41 + 2τ12(l − a) − hext X z (240)

The contribution of the surface y = l with index Y is obtained by interchanging x and y. Equilibrium holds if
the following conditions are satisfied.

hext x = hext X x + hext Y x = hext y = hext X y + hext Y y = 2τ11(l − a),

hext z = hext X z + hext Y z = 4τ12(l − a) (241)

So the prescription of these constant line forces on the edge beam determines two of the parameters of the
state of stress.

τ11 = hext x
2(l − a)

= hext y
2(l − a)

, τ12 = hext z
4(l − a)

(242)

The total cutting force of the beam is given by:

p = pX + pY , px = py = 2
(
τ41l + τ42l + τ42z

)
, pz = 4τ42l + 2τ41z (243)

and assumes the value

px = py = pz = 2
(
2τ42 + τ41

)
l (244)

at the vertex (z = l). Each of the three beams that meet at the vertex provides the same force, and so the single
force that has to be applied at the vertex is three times this value. This implies one more restriction on the
stress parameters.

6
(
2τ42 + τ41

)
l = pvertex x = pvertex y = pvertex z (245)
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Next we study the equilibrium conditions of moments of the beam. The contributions of the two adjacent
surfaces yield according to (178) and (179)

s × pX = −mX L = MX · ey − kext X (246)

τ41l + τ42l + τ42z = pX x = mX yy − kext X y = τ41l + τ42l + τ42z − 4τ33(l − a) − kext X y (247)

τ41l + τ42l + τ42z = pX y = −mX xy + kext X x = τ41l + τ42l + τ42z − 2τ33(l − a) + kext X x (248)

s × pY = −mY L = MY · ex − kext Y (249)

τ41l + τ42l + τ42z = pY x = mY yx − kext Y y = τ41l + τ42l + τ42z − 2τ33(l − a) − kext Y y (250)

τ41l + τ42l + τ42z = pY y = −mY xx + kext Y x = τ41l + τ42l + τ42z − 4τ33(l − a) + kext Y x (251)

Equilibrium requires

− kext X y = kext Y x = 2kext X x = −2kext Y y = 4τ33 (l − a) (252)

This implies

kext x = kext X x + kext Y x = −kext y = −kext X y − kext Y y = 6τ33 (l − a) (253)

and the prescription of these constant line moments on the edge beam provides another restriction of the stress
parameters.

τ33 = kext x
6(l − a)

= − kext y
6(l − a)

(254)

No external linemoment around the z-axis has to be applied since the contributions of the two adjacent surfaces
cancel each other:

mX zy = −mY zx = τ21 (l − a) (255)

Finally we have to check the balance of the double forces that act on the beam at x = y = l in the plane normal
to s = ez according to (181). The three components are:

−šXxy − yY xxx + hext xx = 0 (256)

−šY yx − yXyyy + hext yy = 0 (257)

−šXyy − šY xx − yXxyy − yY yxx + hext xy + hext yx = 0 (258)

and yield

hext xx = hext yy = 0 (259)

hext xy + hext yx = 6τ21 (l − a) (260)

and hence

τ21 = hext xy + hext yx
6(l − a)

(261)

After all we are able to understand the complex statics of the cube. First a single force is applied to the vertex
and is taken by three edge beams that are additionally loaded by constant line forces, line moments, and line
double forces. The magnitude of the cutting force of the beam with x = y = l, e.g., decays with decreasing z,
and the remainder at z = 0 is balanced by a reaction force at the fixed surface. In between the beam surrenders
line forces, line moments, and line double forces to the two adjacent crust shells. These possess cutting forces
and moments. A part of them is applied to the fixed boundaries, while their divergences render loads to the
bulk body of the cube. These are finally balanced by reaction forces at the three fixed boundary surfaces.
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11.2 The illegal treatment of fictitious cuts

It is a widespread bad habit to apply the divergence theorem of surfaces to fictitious cuts. This means that
these cuts are treated like free surfaces with the prescriptions (184). Let us consider a subcube with side length
a < l. If we consider the three cuts around it as free surfaces, then we notice the following behaviour:

– There are no actions on the three surfaces since (183) is satisfied.
– There are no line forces, line moments, and line double forces on the three edges. (Replace l by a in (241),
(253), and (260).)

– There is a single force pvertex x = pvertex y = pvertex z = 6(2τ42 + τ41)a at the vertex x = y = z = a.
(Replace l by a in (245)).

We are confronted by the absurd claim that the interaction between the subcube and the remainder of the
cube is realized by one single force alone at the vertex of the subcube. Actually, however, there is a wealth
of interactions across the three cuts as we have seen in equations (197) to (211), but there are never any
interactions on the edges and on the vertices of a subbody.

12 Conclusion

The paper presents an enhancement of a former one [12]. It had been shown there that some of the free
boundary conditions of a third-gradient continuum can be interpreted as the equilibrium conditions of force
and moment of a shell and of beams. So the body seems endowed with a crust shell and edge beams. Now,
forces and moments are fundamental concepts of mechanics since the time of Archimedes. Therefore, the
physical behaviour of the crust shell cannot depend on the description, either current (Eulerian) or referential
(Lagrangian). Instead, these two kinds of description must be closely related. Although there is no one-to-one
correspondence between the true and nominal stress tensors and effective stress tensors of the same order
within the body, we find, indeed, such a correspondence between the cutting loads (forces, moments, and
double forces) of the crust shell. This can easily be inferred from the comparison of the current and referential
version of the boundary conditions. But someone might question these simple connections, since some of the
surface loads and the cutting loads of the crust shell look extremely different in the two descriptions. Therefore,
an independent check of these connections is performed.

The introduced concepts are illustrated by the case of a cube that is loaded at a vertex and three edges. The
various interactions on fictitious cuts and the cutting loads in the crust shells and edge beams are evaluated. It
is demonstrated that the bad habit to apply the divergence theorem of surfaces to fictitious cuts produces an
absurd result.

No specific constitutive assumptions have been laid down in the investigation. An application to second-
gradient fluids can be found in [22]. Elasticity with a stress-free reference placement will surely be the next
candidate for future research.
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A Detailed proofs

A.1 Tangential derivatives of some geometric quantities

We start with (11)

N−2 = nR · G · GT · nR, −2N−3(∇RT N ) = 2nR · G · (GT · nR) ⊗ ∇RT (262)

and obtain the tangential derivative of N

∇RT N = −N 3nR · G · (GT · nR) ⊗ ∇RT = −N 2ñ · FT · (GT · nR) ⊗ ∇RT

= −N 2ñ · (nR ⊗ ∇RT ) − N 2ñ · FT · ǴT · nR ⊗ ∇RT (263)

http://creativecommons.org/licenses/by/4.0/
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We take into account that the curvature tensor CR = −nR ⊗ ∇RT of the reference surface is planar and
symmetric and obtain with (8)

(∇RbN )pRba = −N 2ñ y
(
pRyz

(
nRz∇Rb + nRb∇Rz)/2 − nRuguw fwyb

)
pRba (264)

We also find the tangential derivative of ñ = NG · GT · nR .

ñ ⊗ ∇RT = G · GT · nR ⊗ (∇RT N ) + NG · GT · (nR ⊗ ∇RT ) + NnR · (G · GT ⊗ ∇RT ) (265)

(ñx∇Rb)pRba = −Nñx ñy
(
pRyz

(
nRz∇Rb + nRb∇Rz)/2 − nRuguw fwyb

)
pRba

+Ngxugyu pRyz
(
nRz∇Rb + nRb∇Rz)/2 pRba

−NnRuguwgxvgyv fwyb pRba − NnRuguvgxwgyv fwyb pRba

= N p̃xwgwugyu pRyz
(
nRz∇Rb + nRb∇Rz)/2 pRba

−NnRu
(
guw p̃xzgzv + gxwguv

)
gyv fwyb pRba (266)

Equation (17) is used to simplify the expression.
Next we need the tangential derivative of Q and make use of (7).

(∇RcQ)pRca = ∇Rc

(N

J

)
pRca = −QNñy

(
pRyz

(
nRz∇Rc + nRc∇Rz)/2

−nRzgzw fwyc

)
pRca − Qδyzgzw fwyc pRca

= −QNñy pRyz
(
nRz∇Rc + nRc∇Rz)/2pRca − Q p̃yzgzw fwyc pRca (267)

After all the modified projector is

P̃ = 1 − N ñ ⊗ nR, p̃el = δel − NñenRl (268)

and its tangential derivative

p̃el∇Rc pRca = −Nñe(nRl∇Rc)pRca − NnRl(ñe∇Rc)pRca − ñenRl(∇RcN )pRca
= −Nñeδly pRyz

(
nRz∇Rc + nRc∇Rz

)
/2pRca

−N 2nRl

(
p̃ewgwugyu pRyz

(
nRz∇Rc + nRc∇Rz

)
/2 − nRu

(
guw p̃ezgzv + gewguv

)
gyv fwyc

)
pRca

+N 2ñenRl ñy
(
pRyz

(
nRz∇Rc + nRc∇Rz

)
/2 − nRuguw fwyc

)
pRca (269)

A.2 Comparison of current and referential quantities

We want to prove the connections S = SR · N and ť = Q ťR and remember that external actions had been
separated and hence can be ignored.
We consider first the component equation of SR · N = QSR · PR · FT = QSR · FT where SR and S are given
by (106) and (108), respectively.

QsRit fzt = Q
(
t̄RiklnRl − NtRiplmnRlnRm p̃cp(∇Rcñk) − (tRiklmnRm p̃el)∇Rc P Rce

)
p̃tk fzt

= Qt̄RiklnRl p̃tk fzt − QNtRiplmnRlnRm p̃cp(∇Rcñk) p̃tk fzt−Q(tRiklmnRm)∇Rc p̃cl p̃tk fzt

−QtRiklmnRm( p̃el∇Rc)P Rce p̃tk fzt (270)
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This should be identical with the component representation of S:

siz = t̄i pqnq ppz − tipqr nqnr pps
1

2
(∇snw + ∇wns)pwz − (tipqr nr pqa)∇b pba ppz

= Qt̄R ikl f pk fql gaqnRagxp p̃yx fzy + QtR iklm f pkl fqmgaqnRagxp p̃yx fzy

−QNtR iklm f pk fql frmgaqnRagbrnRbgxp p̃yx fsy
1

2

(
gcs∇Rc(NgewnRe) + gcw∇Rc(NgesnRe)

)
fwu p̃uvgvz

−
( 1

J
tR iklm f pk fql frmNgxrnRx guq p̃vu fav

)
∇Rwgwb fbc p̃cegeagsp p̃ts fzt

= Qt̄R iklnRl p̃yk fzy + QtR iklm f pklnRmgxp p̃yx fzy

−QNtR iklmnRlnRm p̃yk fsy
1

2

(
gcs∇Rc(NgewnRe) + gcw∇Rc(NgesnRe)

)
fwu p̃uvgvz

−
(
QtR iklmnRm f pk fav p̃vl

)
∇Rc p̃cegeagsp p̃ts fzt

= Qt̄R iklnRl p̃yk fzy + QtR iklm f pklnRmgxp p̃yx fzy

−QNtR iklmnRlnRm(∇RcN )
1

2
( p̃ck p̃ev + p̃cv p̃ek)nRegvz

︸ ︷︷ ︸
−QN 2tR iklmnRlnRm p̃ek

1

2

(
∇RcnRe + ∇RenRc

)
p̃cvgvz

+QN 2tR iklmnRlnRmnRegex fxyc
1

2
( p̃ck p̃yv + p̃cv p̃yk)gvz

−(Q∇Rc)tR iklmnRm p̃cl p̃tk fzt−Q(tR iklmnRm)∇Rc p̃cl p̃tk fzt

−QtR iklmnRm f pkc p̃cl gsp p̃ts fzt − QtR iklmnRm favc p̃vl p̃cegea p̃tk fzt − QtR iklmnRm( p̃el∇Rc) p̃ce p̃tk fzt
(271)

The underbraced term vanishes because of nR · P̃ = 0. Moreover, P̃ · P̃ = P̃ according to (16) was used.
The equality of the corresponding underlined terms is evident. We split the remainder into a part that is linear
in F ⊗ ∇R and one that is linear in nR ⊗ ∇R .
First we compare the factors with QtR iklmnRm fabc and call them Rklabcz and Aklabcz in the referential and
current description, respectively.

Rklabcz = N 2nRlnRu

(
p̃ckguagxvgbv p̃t x + p̃ckgeaguvgbv p̃te − gua p̃cx gxvgbv p̃tk − geaguvgbv P Rce p̃tk

+ñeñbgua P Rce p̃tk
)
fzt (272)

Aklabcz = gxa p̃yx fzyδkbδlc + N 2nRlnRegea
1

2
( p̃ck p̃bv + p̃cv p̃bk)gvz + p̃bx gxa p̃cl p̃tk fzt − p̃cl gsa p̃ts fztδkb

− p̃bl p̃cegea p̃tk fzt − N 2nRlnRugua p̃cx gxvgbv p̃tk fzt
−N 2nRlnRugeaguvgbv p̃ce p̃tk fzt + N 2nRlnRu p̃ceñe︸ ︷︷ ︸ ñbgua p̃tk fzt (273)

The underbraced term vanishes because of P̃ · ñ = 0. The two expressions must be symmetrized in (k, l)
and (b, c) because of tRiklm = tRilkm und fabc = facb. Nevertheless it is by no means obvious that they are
identical. Since they depend on six parameters we have to secure the identity of 36 = 729 single expressions.
This task can easily be performed with the help of a computer algebra system. Without loss of generality, we
may choose a Cartesian system such that nR = e3. Moreover we may apply a rigid rotation of the body such
that the local transplacement becomes

F = f11e1 ⊗ e1 + f12e1 ⊗ e2 + f13e1 ⊗ e3 + f22e2 ⊗ e2 + f23e2 ⊗ e3 + f33e3 ⊗ e3 (274)

and hence n = nR = e3. The summation over indices that occur twice can be done with a matrix multiplication
routine. Initially there is no coincidence in 18 cases with k = l = 3. However, the boundary condition (126)
reduces to tRi333 = 0 so that these differing expressions are both multiplied by zero.
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Next we compare the factors with QtR iklmnRm
(
nRx∇Rc + nRc∇Rx )/2 and call them Rklxcz and Aklxcz in the

referential and current description, respectively.

Rklxcz = −N 2nRl p̃twgwugyu pRyx p̃ck fzt + Nñe pRlx p Rce p̃tk fzt

+N 2nRl p̃cwgwugyu pRyx p̃tk fzt − N 2nRl ñeñ y pRyx p Rce p̃tk fzt (275)

Aklxcz = −N 2nRl p̃xk p̃cvgvz + Nñy pRyx p̃cl p̃tk fzt + N p̃ceñe︸ ︷︷ ︸ δly pRyx p̃tk fzt

+N 2nRl p̃cwgwugyu pRyx p̃tk fzt − N 2nRl p̃ceñe︸ ︷︷ ︸ ñ y pRyx p̃tk fzt (276)

The underbraced terms vanish because of P̃ · ñ = 0. The two expressions must be symmetrized in (k, l) and
(x, c) because of tRiklm = tRilkm und nRx∇Rc = nRc∇Rx . Since they depend on five parameters, we have to
compare 35 = 243 single expressions, and indeed, they turn out to be identical.
Finally we have to check the statement (122) Q ťR = ť where ťR is given by (78) — the last term vanishes due
to (126) — and ť is given by (83). The component of Q ťR is

QťRi = QNt̄RiklnRknRl + QNtRiklmnRm p̃el
1

2

(
(∇RcnRe) + (∇RenRc)

)
pRck

+QtRiklmnRlnRm p̃ck(∇RcN ) − QN 2tRiklmnRlnRm p̃ck(∇Rcñe)nRe

= QNt̄RiklnRknRl + QNtRiklmnRm p̃el
1

2

(
(∇RcnRe) + (∇RenRc)

)
pRck

−QN 2tRiklmnRlnRm p̃ck ñy
(
pRye

(
nRe∇Rc + nRc∇Re)/2 − nRegew fwyc

)

−QN 3tRiklmnRlnRm p̃ckgwugyu pRyz
(
nRz∇Rc + nRc∇Rz)/2 nRe p̃ew︸ ︷︷ ︸

+QN 3tRiklmnRlnRm p̃cknRu
(
guw nRe p̃ez︸ ︷︷ ︸ gzv + gewguvnRe

)
gyv fwyc (277)

The underbraced terms vanish. This has to be compared with the component of ť.

ťi = t̄i pqn pnq + tipqr nr pqs(ns∇w + nw∇s)/2pwp

= QNt̄R ikl f pk fql gbpnRbgaqnRa + QNtR iklm f pkl fqmgbpnRbgaqnRa

+QtR iklm f pk fql frmgarnRagxq p̃yx fsy
1

2

(
gcs∇Rc(NgewnRe) + gcw∇Rc(NgesnRe)

)
fwu p̃uvgvp

= QNt̄R iklnRknRl + QNtR iklmnRm f pkl gbpnRb

+QtR iklmnRm p̃yl fsy
1

2

(
gcs∇Rc(NgewnRe) + gcw∇Rc(NgesnRe)

)
fwu p̃uk

= QNt̄R iklnRknRl + QNtR iklmnRm f pkl gbpnRb

−QNtR iklmnRmnRegea fabc
1

2

(
p̃cl p̃bk + p̃bl p̃ck

)

+QtR iklmnRm p̃cl N
1

2

(
(∇RcnRe) + (∇RenRc)

)
p̃ek

+QtR iklmnRm
1

2

(
nRe p̃ek︸ ︷︷ ︸ p̃cl + nRe p̃el︸ ︷︷ ︸ p̃ck

)
(∇RcN )

(278)

The underbraced terms vanish again.
The equivalence of the underlined terms is obvious. Next we compare the factors with QtR iklmnRm fabc and
call them Rklabc and Aklabc in the referential and current description, respectively.

Rklabc = NgeanRe

(
NnRl p̃ck ñb + N 2nRl p̃cknRuguvgbv

)
(279)

Aklabc = NgeanRe

(
δbkδcl − ( p̃cl p̃bk + p̃bl p̃ck)/2

)
(280)
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The two expressions must be symmetrized in (k, l) and (b, c). Since they depend on five parameters, we have
to compare 35 = 243 single expressions. Initially there is no coincidence in 9 cases with k = l = 3. However,
the boundary condition (126) reduces to tRi333 = 0 so that these differing expressions are both multiplied by
zero.
Finally we compare the factors with QtR iklmnRm

(
nRx∇Rc + nRc∇Rx )/2 and call them Rklxc and Aklxc in the

referential and current description, respectively.

Rklxc = N p̃xl pRck − N 2nRl p̃ck ñy pRyx (281)

Aklxc = N p̃cl p̃xk (282)

The two expressions must be symmetrized in (k, l) and (x, c). Since they depend on four parameters, we have
to compare 34 = 81 single expressions and, indeed, they turn out to be identical.
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