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Abstract Bounds to the overall stiffness of a composite arewell-knownwithin the classical theory of elasticity.
They are based on the positive-definiteness of the local stiffness. A transfer to a prestressed state is not trivial.
We may study the incremental stiffness that connects the nominal stress rate with the velocity gradient. But
when there are mainly compressive stresses, then positive-definiteness can only be secured if this stiffness
is replaced by a pseudo-stiffness. Its existence is equivalent to a strengthened form of uniform infinitesimal
polyconvexity and is independent of the geometry. The same is the case with the crude Voigt and Reuss
bounds. More refined kinematic or dynamic approximations do, of course, depend on the geometry. This is
demonstrated with the unidirectional reinforcement of a matrix.

Mathematics Subject Classification 74B10

1 Introduction

We want to derive bounds to the overall incremental stiffness of heterogeneous hyperelastic media without
voids, cracks, or rigid inclusions. (Remarks on voids can be found in Sect. 7. An extension to rigid inclusions
is given in the author’s book on the theory of materials [1].) Constraints like incompressibility are also not
taken into account. In order to make the notion of overall stiffness precise, we restrict our intention to any one
of the following two types of problems.

– Type 1: The heterogeneous body is finite and its boundary undergoes a homogeneous deformation.
– Type 2: The heterogeneous body is infinite and has a periodic structure. Only periodic fields of stress and
strain are admitted.

Our results will be valid simultaneously for each of these two types of problems. We recall the following
classical results (cf. e.g. the review article of Willis [2]). Remarks on the notation can be found in Appendix
A.

Consider a linear hyperelastic body with the local constitutive relation

T = C : E (1)

(T: stress, E: small strain) and let a bar denote the volume average taken over the whole finite body (type 1)
or over a typical cell of the periodic infinite body (type 2). The overall stiffness C̃ is then defined as the linear
mapping between the average values

T̄ = 1

V

∫
T dV , Ē = 1

V

∫
E dV (2)
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of stress and strain, i.e.

T̄ = C̃ : Ē. (3)

If the local stiffness C is positive-definite throughout the body, then the following bounds exist:

E : C : E ≥ Ē : C̃ : Ē ≥ 2 T̄ : Ē − T : C−1 : T. (4)

On the left-hand side,E is any compatible strain field, while, on the right-hand side,T is any equilibrium stress
field.

We are interested in the behaviour of a prestressed body. Therefore we replace the finite relation (1) between
stress and strain by the incremental relation

S = A : L = C : D + L · T (5)

between the rate of nominal stress S and the velocity gradient L. This formula is elaborated in Eq. (163) of
AppendixA. The second-order tensors S andL are, in general, not symmetric. The overall incremental stiffness
Ã relates the average values of these tensors by

S̄ = Ã : L̄. (6)

If A is positive-definite throughout the body, then the following bounds can be constructed along the classical
line:

L : A : L ≥ L̄ : Ã : L̄ ≥ 2 S̄ : L̄ − S : A−1 : S. (7)

On the left-hand side, L is any admissible velocity gradient field, while, on the right-hand side, S is any
admissible solenoidal field (cf. Eqs. (164), (165) of Appendix A).

This result is not satisfactory. Positive-definiteness of the local incremental stiffness A means

L : A : L = D : C : D + T : LT · L > 0 if L �= 0. (8)

There are cases where A is indeed positive-definite everywhere, but there are also important cases where it is
not and therefore the bounds (7) are not valid.

– Case 1: The second-order tensor T and the fourth-order tensorC are positive-definite everywhere. So there
are only tensile principal stresses in the whole body. Then A is obviously positive-definite.

– Case 2: Let

T = t1e1 ⊗ e1 + t2e2 ⊗ e2 + t3e3 ⊗ e3 , L = e3 × 1 = e2 ⊗ e1 − e1 ⊗ e2. (9)

Then

L : A : L = T : LT · L = t1 + t2. (10)

If there are compressive stresses at some point such that the sum of two principal stresses is negative, then
A is obviously not positive-definite at that point.

– Case 3: There is no prestress (T = 0) and C is indefinite at some point and so is A.

The aim of this paper is the construction of upper and lower bounds to the incremental stiffness even in such
cases where A is not positive-definite throughout the body. This is achieved by using a modified local stiffness
A∗ instead of A.

Someof the theoretical resultswere presented in a lecture at theXVIth InternationalCongress of Theoretical
and Applied Mechanics, Lyngby, Denmark, 1984. The emphasis of this paper is on the elaboration of some
applications of the method and the demonstration of its benefits.

The article is organized as follows. The connection between the micro- and macrobehaviour of a composite
is explained in Sect. 2. Section 3 introduces the concept of a pseudo-stiffness which allows the construction of
upper and lower bounds in Sects. 4 and 5. The constitutive assumptions on which the existence of a pseudo-
stiffness is based are investigated in Sect. 6. Some remarks on the treatment of cavities can be found in Sect. 7.
Our construction of bounds is detailed in the context of a special geometry in Sect. 8: reinforcement in one
direction. Finally, Sect. 9 presents the numerical evaluation of various examples.
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2 The microfields

We need the following definitions.

– S is the set of solenoidal tensor fields S (cf. Eqs. (164), (165) of Appendix A). In case of a problem of
type 2, these fields must additionally be periodic.

– U is the set of continuous and piecewise continuously differentiable vector fields u. In case of a problem
of type 1, u must vanish on the boundary of the body. In case of a problem of type 2, u must be periodic.

We study velocity fields

v = L̄ · r + u u ∈ U , (11)

where r denotes the position vector, and their gradients—note r ⊗ ∇ = 1—

L ≡ v ⊗ ∇ = L̄ + u ⊗ ∇. (12)

It follows from Eq. (168) of Appendix B that L̄ is indeed the mean value of the velocity gradient field.
The velocity field induces the following rate of nominal stress field according to Eq. (5).

S = C : sym [
L̄ + u ⊗ ∇] + (L̄ + u ⊗ ∇) · T. (13)

The exact microfields ue and Se are obtained if the field S is solenoidal, i.e.

0 = Se · ∇ =
(
C : sym [

L̄ + ue ⊗ ∇]) · ∇ +
(
(L̄ + ue ⊗ ∇) · T

)
· ∇. (14)

Since we postulate T to be solenoidal, we obtain ue from the differential equation
(
C(r) : sym [ue ⊗ ∇]

)
· ∇ + ue ⊗ ∇ ⊗ ∇ : T = −sym[L̄] : (

C(r) · ∇) = −D̄ : (
C(r) · ∇)

. (15)

We notice that the field ue is a linear function of D̄. Therefore, averaging (5) and noting (171) of Appendix B,
we can define the overall incremental stiffnesses Ã and C̃ by

S̄e = A : Le = Ã : L̄
= C : De + Le · T = C̃ : D̄ + L̄ · T̄. (16)

3 The pseudo-stiffness

The construction of bounds is only possible with a fourth-order tensor that is positive-definite everywhere in
the body. If the stiffness A does not satisfy this requirement, we replace it by a pseudo-stiffness A∗, defined
by

A∗ : L ≡ A : L − 1

2

(
Y · LT + LT · Y − 1 : L Y − Y : L 1

)
, (17)

where Y is any second-order tensor. We hope to find a Y that makes the quadratic form

L : A∗ : L = L : A : L − Y : (
L2 − 1 : L L

) = D : C : D + T : LT · L − Y : (
L2 − 1 : L L

)
(18)

positive-definite.
If Y is constant throughout the body and L = v ⊗ ∇ is any velocity gradient field then

(
Y · LT + LT · Y − 1 : L Y − Y : L 1

) · ∇
= (Y · ∇ ⊗ v) · ∇ − Y · ∇(v · ∇) + ∇ ⊗ v · Y · ∇ − ∇(Y : v ⊗ ∇) = 0. (19)

This has an important consequence: If v = ve is the exact velocity field, then not only the nominal stress rate
Se but also the pseudo-stress rate

S∗
e = A∗ : Le = Se − 1

2

(
Y · LT

e + LT
e · Y − 1 : Le Y − Y : Le 1

)
(20)
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is solenoidal.

Se · ∇ = 0 ⇐⇒ S∗
e · ∇ = 0. (21)

The overall pseudo-stiffness Ã
∗
is defined by

S∗
e = Ã

∗ : L̄ = A∗ : Le = A : Le − 1

2

(
Y · L̄T + L̄

T · Y − 1 : L̄ Y − Y : L̄ 1
)

(22)

and we have

L̄ : Ã∗ : L̄ = D̄ : C̃ : D̄ + T̄ : L̄T · L̄ − Y : (L̄
2 − 1 : L̄ L̄). (23)

Our incremental stiffnesses enjoy the symmetries

C : D = D : C , A : L = L : A , A∗ : L = L : A∗. (24)

4 Construction of the upper bound

An arbitrary kinematically admissible velocity field can be written as

v = ve + z, (25)

where z ∈ U is the deviation from the exact velocity field v e. Then we have

L : A∗ : L = (Le + z ⊗ ∇) : A∗ : (Le + z ⊗ ∇) = Le : A∗ : Le + 2 z ⊗ ∇ : A∗ : Le︸ ︷︷ ︸+z ⊗ ∇ : A∗ : z ⊗ ∇.

(26)

The underbraced term vanishes because of Eq. (167) of Appendix B since it can be rewritten as

z ⊗ ∇ : A∗ : Le = S∗
e : z ⊗ ∇. (27)

The first term can be expanded as follows:

Le : A∗ : Le = Le : S∗
e = (L̄ + ue ⊗ ∇) : S∗

e = L̄ : S∗
e + (ue ⊗ ∇) : S∗

e︸ ︷︷ ︸ = L̄ : Ã∗ : L̄. (28)

The underbraced term vanishes again. We arrive at the upper bound

L̄ · Ã∗ : L̄ ≤ L : A∗ : L (29)

if the last term in (26) cannot be negative. This is achieved if a Y can be found so that A∗ is positive-definite
everywhere in the body. The simplest choice would be Y = 0, but it is only admissible if A is positive-definite
everywhere. The inequality is expanded with the help of (18) and (23):

D̄ : C̃ : D̄ + T̄ : L̄T · L̄ − Y : (L̄
2 − 1 : L̄ L̄) ≤ D : C : D + T : LT · L − Y : (L2 − 1 : L L). (30)

Noting Eqs. (172) and (173) of Appendix B, we finally arrive at an upper bound to the overall incremental
stiffness C̃:

D̄ : C̃ : D̄ ≤ D : C : D + T : (∇ ⊗ u) · (u ⊗ ∇). (31)

The existence of a tensor Y was necessary for the validity of this statement, but its value does not enter the
inequality. If a tensor Y cannot be found, then the right-hand side is surely an approximation of the left-hand
side but not necessarily an upper bound.

Equation (26) reveals that the error of the bound is quadratic in the deviation field z.
The simplest assumption u ≡ 0 yields the Voigt bound

D̄ : C̃ : D̄ ≤ D̄ : C̄ : D̄. (32)

It does not depend on the stress field T and is hence identical with the classical expression of the unstressed
state.
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5 Construction of the lower bound

If A∗ is positive-definite, then (20) can be inverted:

Le = A∗−1 : S∗
e . (33)

An arbitrary dynamically admissible (i.e. solenoidal) pseudo-stress rate field can be written as

S∗ = S∗
e + Sz, (34)

where Sz ∈ S is the deviation from the exact field S∗
e . Then we study

2 L̄ : S∗ − S∗ : A∗−1 : S∗ = 2 L̄ : (S∗
e + Sz) − (S∗

e + Sz) : A∗−1 : (S∗
e + Sz)

= 2 L̄ : S∗
e − S∗

e : A∗−1 : S∗
e + 2 (L̄ − A∗−1 : S∗

e) : Sz︸ ︷︷ ︸−Sz : A∗−1 : Sz . (35)

The underbraced term vanishes since we have

(L̄ − A∗−1 : S∗
e) : Sz = (L̄ − Le) : Sz = − (ue ⊗ ∇) : Sz = 0. (36)

The first and the second term can be rewritten by means of (28) and (33),

S∗
e : A∗−1 : S∗

e = Le : S∗
e = L̄ : S∗

e = L̄ : Ã∗ : L̄. (37)

The last term cannot be negative since A∗−1 is positive-definite if A∗ is. So we arrive at the lower bound

2 L̄ : S∗ − S∗ : A∗−1 : S∗ ≤ L̄ : Ã∗ : L̄. (38)

Equation (35) reveals that the error of the bound is quadratic in the deviation field Sz .
A lower bound to the overall incremental stiffness C̃ is obtained by means of (23):

2 L̄ : S∗ − S∗ : A∗−1 : S∗ − T̄ : L̄T · L̄ + Y : (L̄
2 − 1 : L̄ L̄) ≤ D̄ : C̃ : D̄. (39)

In contrast to the upper bound, this lower bound depends on the choice of the tensor Y, not only explicitly but
also hidden in A∗−1. The simplest assumption S∗ = const. yields the Reuss bound

2 L̄ : S∗ − S∗ : A∗−1 : S∗ − T̄ : L̄T · L̄ + Y : (L̄
2 − 1 : L̄ L̄) ≤ D̄ : C̃ : D̄. (40)

Given some L̄, the left-hand side is maximal if we have

2 L̄ : δS∗ − 2 S∗ : A∗−1 : δS∗ = 0 (41)

or

A∗−1 : S∗ = L̄ ⇐⇒ S∗ =
(
A∗−1

)−1 : L̄ (42)

and the bound becomes

L̄ :
(
A∗−1

)−1 : L̄ − T̄ : L̄T · L̄ + Y : (L̄
2 − 1 : L̄ L̄) ≤ D̄ : C̃ : D̄. (43)

The left-hand side depends not only on D̄ but also on the spin W̄ which should be chosen so that the left-hand
side assumes its maximum value. This task is performed in Sect. 8.2.
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6 Examination of the constitutive requirement

The constitutive requirement on which the construction of our bounds is based deserves further inspection.
Actually, it consists of two distinct parts:

1. A local inequality that reads:
A tensor Y can be found such that

L : A∗ : L = L : A : L − Y : (
L2 − 1 : L L

)
> 0 if L �= 0. (44)

2. A global statement concerning the inhomogeneous body as a whole. It reads:
The tensor Y must be the same for all points. So it is a constant and not a field. Note that the fulfilment of
this condition depends on the set A of the local stiffnesses A of all the material elements but not on their
geometric distribution. On the other hand, the geometry must be taken into account to obtain this set A
itself.

The local inequality is intimately related to the concept of polyconvexity introduced by Ball [3] into the theory
of finite elasticity. If the strain energy of a hyperelastic material element is polyconvex (at least with respect
to the actual state), then the weakened form (with ≥ instead of > ) of (44) , which may be called infinitesimal
polyconvexity, is satisfied. So our constitutive requirement is the strengthened form of uniform infinitesimal
polyconvexity.

An important implication of the local inequality is revealed if we choose L in the form of a rank-1 tensor.

L = a ⊗ b �⇒ L2 − 1 : L L = 0 �⇒
a ⊗ b : A∗ : a ⊗ b = a ⊗ b : A : a ⊗ b > 0 if |a||b| �= 0. (45)

This is the condition of strong ellipticity (S-E) which is thus seen to be valid throughout the body. If it is
violated anywhere in the body, then there exists no tensor Y to satisfy our local inequality. In special cases of
symmetry the S-E condition is not only necessary but also sufficient for the existence of a local Y. Anyhow,
the validity of the S-E condition at each point is generally insufficient to ensure that Y be the same throughout
the body.

We learn from Eq. (28) that the constitutive requirement implies the overall incremental stiffness Ã
∗
to be

positive-definite. Therefore the global constitutive law satisfies the S-E condition, too.
Moreover, the validity of the constitutive requirement implies the uniqueness of the microfield ue (in case

of a problem of type 2 only up to a constant field). To show this, we assume the existence of two such fields.
Their difference z is an element ofU , and the corresponding pseudo-stress rate S∗

z = A∗ : z⊗∇ is an element
of S . Hence, according to equations (167) and (169) of Appendix B, we have

0 = S∗
z : z ⊗ ∇ = z ⊗ ∇ : A∗ : z ⊗ ∇ = z ⊗ ∇ : A : z ⊗ ∇. (46)

But this implies z ≡const. if A∗ is positive-definite everywhere. The same argument has previously been used
by Hill [4] to establish uniqueness in special cases. The uniqueness of ue means that internal buckling (i.e. a
bifurcation) of the body is prevented. It cannot, however, exclude finite snapthrough.

We obtained the following hierarchy of statements:

Uniform infinitesimal polyconvexity ←− ∃ global Y ⇐⇒ Ã
∗
positive-definite �⇒ ∃ global S-E condition

⇓ �⇒ No internal buckling −→ Global inf. quasiconvexity

Local infinitesimal polyconvexity ←− ∃ local Y ⇐⇒ local A∗ positive-definite
⇓ ⇓

Local infinitesimal quasiconvexity ⇐⇒ Hadamard condition ←− ∃ local S-E condition

The thin symbol of implication (←−) means that a strict inequality (>) implies a non-strict inequality
(≥). The theorem of van Hove [5] establishes the equivalence of local infinitesimal quasiconvexity and the
Hadamard condition. Truesdell and Noll [6] (Eq. 68.b.18) even present a stronger result: If a homogeneous
body is in a homogeneously strained configuration, the S-E condition is satisfied and the boundary is fixed,
then only the trivial solution u ≡ 0 exists. (They call such a state infinitesimally superstable. If only the
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weaker Hadamard condition is satisfied, they call it infinitesimally stable.) This implies that internal buckling
is impossible at least with our problem of type 1.

The situation is surely not so simple with composites. When a global Y can be found, then the global S-E
condition is guaranteed and internal buckling prevented. If such aY cannot be found, however, we do not know
whether a loss of global strong ellipticity will happen at all or when and the same is the case with internal
buckling.

7 Treatment of cavities

We idealize the cavity as a component with a small stiffness and a small tensile stress:

Cc = μc I , Tc = σc1. (47)

The local inequality reads

μc D : D + σc 1 : LT · L − Y : (L2 − 1 : L L) > 0. (48)

We use an orthonormal basis and discuss two choices:

L = e1 ⊗ e2 + e2 ⊗ e1 �⇒ 2μc + 2σc − y11 − y22 > 0, (49)

L = e1 ⊗ e2 − e2 ⊗ e1 �⇒ 2σc + y11 + y22 > 0. (50)

This implies

− 2σc < y11 + y22 < 2μc + 2σc (51)

for any orthonormal basis. Since μc and σc may be arbitrarily small, only Y = 0 is possible. Our bounds are
then applicable if Y = 0 is admissible at all points, i.e. only in the special case where A is positive-definite
everywhere in the solid body.

The construction of a Reuss bound makes no sense since the only admissible constant solenoidal field is
S = 0.

8 A special geometry: reinforcement in one direction

8.1 Constitutive requirements

The material behaviour of both the matrix and the reinforcement—called component #1 and component #2,
respectively—is assumed to be isotropic:

C j = 2μ j I + λ j1 ⊗ 1 j = 1, 2. (52)

The reinforcement consists of cylindrical fibres of various radii in the direction e with total volume fraction c.
The prestress is assumed to be constant in each of the two components. The fields

T j = t01 + ť j e ⊗ e j = 1, 2 (53)

satisfy the condition of equilibrium. A suitable form of Y is then

Y = y01 + y̌ e ⊗ e. (54)

The overall behaviour of the composite will be transversely isotropic. Therefore we need a special decompo-
sition of our tensors. We introduce the identity in the plane normal to e

1p = 1 − e ⊗ e (55)

and the plane parts of D and of the symmetric part of S∗ and their plane deviators,

Dp = 1p · D · 1p = D̂p + 1

2
1 : Dp 1p with 1 : D̂p = 0, (56)
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Sp = 1

2
1p · (

S∗ + S∗ T ) · 1p = Ŝp + 1

2
1 : Sp 1p with 1 : Ŝp = 0. (57)

The decompositions are

L = D + W = D̂p + 1

2
1 : Dp 1p + d e ⊗ e + d ⊗ e + e ⊗ d + w e × 1 + w ⊗ e − e ⊗ w (58)

with d · e = 0 and w · e = 0 and

S∗ = Ŝp + 1

2
1 : Sp 1p + s e ⊗ e + p ⊗ e + e ⊗ p + ω e × 1 + q ⊗ e − e ⊗ q (59)

with p · e = 0 and q · e = 0.
Noting (5) and (17) we arrive at the local constitutive law and its inverse:

S∗ = A∗ : L = α1 D̂p + (
α2 1 : Dp + α3 d

)
1p + (

α̂3 1 : Dp + α4 d
)
e ⊗ e

+ α5 d ⊗ e + α6 e ⊗ d + α7 w e × 1 + α8w ⊗ e + α9 e ⊗ w (60)

with

α1 = 2μ + t0 − y0 , α2 = 1

2
(2μ + 2λ + t0 + y0) , α3 = α̂3 = 1

2
(2λ + 2y0 + y̌), (61)

α4 = 2μ + λ + t0 + ť , α5 = 1

2
(4μ + 2t0 − 2y0 − y̌ + 2ť) , α6 = 1

2
(4μ + 2t0 − 2y0 − y̌), (62)

α7 = t0 + y0 , α8 = 1

2
(2t0 + 2y0 + y̌ + 2ť) , α9 = − 1

2
(2t0 + 2y0 + y̌) (63)

�⇒ α5 − α6 = α8 + α9 = ť (64)

and

L = A∗−1 : S∗ = β1 Ŝp + (
β2 1 : Sp + β3 s

)
1p + (

β̂3 1 : Sp + β4 s
)
e ⊗ e

+β5 p ⊗ e + β6 e ⊗ p + β7 ω e × 1 + β8 q ⊗ e + β9 e ⊗ q (65)

with

β1 = 1

α1
, β2 = α4

�1
, β3 = − 2α3

�1
, β̂3 = − 2α̂3

�1
, β4 = 4α2

�1
, (66)

β5 = − 4α9

�2
, β6 = 4α8

�2
, β7 = 1

α7
, β8 = 4α6

�2
, β9 = − 4α5

�2
, (67)

and

�1 = 4(α2α4 − α3α̂3) = 1

β2β4 − β3β̂3
, �2 = 2(α6α8 − α5α9) = 8

β6β8 − β5β9
. (68)

The distinction between α3 and α̂3 will only be needed later. Here we get

L : A∗ : L = α1D̂p : D̂p + α2(1 : Dp)
2 + 2 α3 1 : Dp d + α4 d

2

+ (α5 + α6)d · d + 2 α7 w2 + (α5 − α6 + α8 + α9)d · w + (α8 − α9)w · w
= α1D̂p : D̂p+α2

(
1 : Dp+ α3

α2
d
)2 + �1

4α2
d2 + 2α7w

2 + (α8 − α9)
(
w + α8 + α9

α8 − α9
d
)2 + �2

α8 − α9
d · d.

(69)
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Positive-definiteness of A∗ requires

α1 > 0 , α2 > 0 ,
�1

4
= α2α4 − α2

3 > 0 , α7 > 0 , α8 − α9 > 0 ,
�2

2
= α6α8 − α5α9 > 0.

(70)

The restrictions on α1, α2, α7 yield upper and lower bounds to y0. The third condition describes a region in
the y0, y̌-plane that is bounded by the following parabola branches:

y̌ = −2λ − 2y0 ±
√
2(2μ + λ + t0 + ť)y0 + 4(μ + λ)(2μ + λ + ť) + 2(4μ + 3λ + t0 + ť)t0. (71)

The sixth condition describes a region in the y0, y̌-plane that is bounded by the following two parallel lines:

y̌ = −2t0 − 2y0 + 2
(
μ + t0 ±

√
(μ + t0)(μ + t0 + ť)

)
. (72)

Both components must also satisfy the S-E conditions:

a ⊗ b : A : a ⊗ b = μ a · a b · b + (μ + λ)(a · b)2 + a · a (
t0 b · b + ť (b · e)2) > 0. (73)

We choose |a| = |b| = 1 and call γ the angle between b and a and ε the angle between b and e. Then

μ + (μ + λ) cos2 γ + t0 + ť cos2 ε > 0. (74)

This implies four inequalities,

μ + t0 > 0 , 2μ + λ + t0 > 0 , μ + t0 + ť > 0 , 2μ + λ + t0 + ť > 0. (75)

Due to the first condition of (75) the fifth condition of (70) may be disregarded since it can never be more
rigorous than the sixth condition.

Inequalities (70) and (75) must be satisfied for each of the two components separately. If it turns out that a
contradiction exists between the conditions of the two components, then a tensor Y cannot be found and our
construction of bounds is not applicable. An example will be discussed in Sect. 9.1.

8.2 Voigt and Reuss bounds

We note

D̄ : D̄ = ˆ̄Dp : ˆ̄Dp + 1

2
(1 : D̄p)

2 + d̄2 + 2 d̄ · d̄ , 1 : D̄ = 1 : D̄p + d̄. (76)

The Voigt bound (32) is easily evaluated.

D̄ : C̃ : D̄ ≤ 2μ̄D̄ : D̄ + λ̄(1 : D̄)2

= τV1
ˆ̄Dp : ˆ̄Dp + τV2 (1 : D̄p)

2 + τV3 1 : D̄p d̄ + τV4 d̄2 + τV5 d̄ · d̄ (77)

with

τV1 = 2μ̄ , τV2 = μ̄ + λ̄ , τV3 = 2 λ̄ , τV4 = 2μ̄ + λ̄ , τV5 = 4μ̄ (78)

and

μ̄ = (1 − c)μ1 + cμ2 , λ̄ = (1 − c)λ1 + c λ2. (79)

The Reuss bound (43) gives

D̄ : C̃ : D̄ ≥ ε ˆ̄Dp : ˆ̄Dp + ζ (1 : D̄p)
2 + η 1 : D̄p d̄ + θ d̄2

+ 2
(
β̄7

−1 − t0 − y0
)
w̄2 + φ d̄ · d̄ + χ d̄ · w̄ + ψ w̄ · w̄ (80)
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with

ε = β̄1
−1 − t0 + y0, (81)

ζ = 1

4

(
β̄4/(β̄2β̄4 − β̄3

¯̂
β3) − 2t0 − 2y0

)
, (82)

η = −1

2

(
(β̄3 + ¯̂

β3)/(β̄2β̄4 − β̄3
¯̂
β3) + 4y0 + 2 y̌

)
, (83)

θ = β̄2/(β̄2β̄4 − β̄3
¯̂
β3) − t0 − ¯̌t, (84)

φ ≡ 2
(
β̄8 − β̄9

)
/(β̄6β̄8 − β̄5β̄9) − 2t0 − ¯̌t + 2y0 + y̌, (85)

χ ≡ 2
( − β̄8 − β̄9 + β̄6 − β̄5

)
/(β̄6β̄8 − β̄5β̄9) − 2 ¯̌t, (86)

ψ ≡ 2
(
β̄5 + β̄6

)
/(β̄6β̄8 − β̄5β̄9) − 2t0 − ¯̌t − 2y0 − y̌, (87)

and

¯̌t = (1 − c)ť1 + c ť2. (88)

The expression does not only depend on D̄ but also on W̄. The underlined term vanishes, however. The
maximum is achieved if we choose χ d̄ + 2ψ w̄ = 0. Then the last three terms of (80) become

(
φ − χ2

4ψ

)
d̄ · d̄. (89)

This expression is indefinite in the case ť ≡const. which implies χ = ψ = 0. This is especially irritating if we
want to investigate the stress-free state T ≡ 0. The problem is easily avoided if we apply a slightly modified ť .
So we arrive at

D̄ : C̃ : D̄ ≥ τR1
ˆ̄Dp : ˆ̄Dp + τR2 (1 : D̄p)

2 + τR3 1 : D̄p d̄ + τR4 d̄2 + τR5 d̄ · d̄ (90)

with

τR1 = ε , τR2 = ζ , τR3 = η , τR4 = θ , τR5 = φ − χ2

4ψ
. (91)

8.3 The kinematic approach

Now we allow a microdisplacement u:

L = D + W = L̄ + u ⊗ ∇ = D̄ + W̄ + u ⊗ ∇. (92)

We first consider one single cylindrical wire of radius R in an infinite matrix and use cylindrical co-ordinates
with local basis er , eφ, e. The deformation of the matrix shall be influenced by the reinforcement within a
cylinder of radius ξ R. We are interested in the case where the reinforcement is very stiff. It cannot but undergo
an extension in the direction of e accompanied by a lateral contraction characterized by Poisson’s ratio

ν = λ2

2(μ2 + λ2)
. (93)

This means
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u = f (r)

r
K · r with K = −(1 + e ⊗ e) · D̄ · 1p − ν e · D̄ · e 1p = −

(
ˆ̄Dp +

(1
2
1 : D̄p + νd̄

)
1p + 2e ⊗ d̄

)

(94)

and

u ⊗ ∇ = f (r)

r
K · (r ⊗ ∇) + K · r ⊗ ∇

( f (r)

r

)
= f (r)

r
K + K · er ⊗ er r

( f (r)

r

)′

= K ·
(
f ′er ⊗ er + f

r
eφ ⊗ eφ

)
. (95)

We choose

f (r) =

⎧⎪⎨
⎪⎩
r : 0 ≤ r ≤ R (wire zone),

R
(

ξ R−r
ξ R−R

)2 : R ≤ r ≤ ξ R (transition zone),

0 : ξ R ≤ r (far zone).

(96)

Within the wire we have

u ⊗ ∇ = K , D = D̄ + sym [K] = d̄
(
e ⊗ e − ν 1p

)
, (97)

and far away

D = D̄. (98)

We want to evaluate the upper bound according to (31):

D̄ : C̃ : D̄ ≤ D : C : D + T : (∇ ⊗ u) · (u ⊗ ∇)

= 2μD : D + λ(1 : D)2 + T : (∇ ⊗ u) · (u ⊗ ∇)

= 2 μ̄ D̄ : D̄ + 4 D̄ : μ sym[u ⊗ ∇] + 2μ sym[u ⊗ ∇] : sym[u ⊗ ∇]
+ λ̄(1 : D̄)2 + 2(1 : D̄)λ 1 : sym[u ⊗ ∇] + λ (1 : sym[u ⊗ ∇])2
+T : (∇ ⊗ u) · (u ⊗ ∇). (99)

Consider a cross section normal to e with total area A. The areas of the wire zones, the transition zones,
and the far zone are ∑

Aw = c A ,
∑

At = (ξ2 − 1) c A , A f = (1 − c ξ2)A. (100)

The mean value of some function � can be composed of the mean values of the three zones,

�̄ = c �̄w + (ξ2 − 1) c �̄t + (1 − c ξ2)�̄ f . (101)

The condition A f > 0 requires c ξ2 < 1. In the special case of a regular hexagonal arrangement of wires with
identical radius we even have cξ2 < π/(2

√
3). We will later on perform our examples with ξ = 2.5. This

value is applicable if the volume fraction c of the reinforcement is not much greater than 10%.
We make use of the results of Appendix C and find

μ sym[u ⊗ ∇] = − c
(
μ1 − μ2

)
sym [K], (102)

1 : λ sym[u ⊗ ∇] = − c
(
λ1 − λ2

)
1 : K, (103)

μ sym[u ⊗ ∇] : sym[u ⊗ ∇]=−c(μ1−μ2)sym [K] : sym [K]+cμ1k(ξ)
1

8

(
5K : K+KT : K+(1p : K)2

)
,

(104)
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λ
(
1 : sym[u ⊗ ∇])2 = −c(λ1 − λ2)(1p : K)2 + cλ1k(ξ)

1

4

(
2sym [K] : sym [K] + (1p : K)2

)
, (105)

T : (∇ ⊗ u) · (u ⊗ ∇) = t0 (u ⊗ ∇) : (u ⊗ ∇)

= c t0 k(ξ)K : K. (106)

Noting the representation (94) of K we finally arrive at the upper bound

D̄ : C̃ : D̄ ≤ τK1
ˆ̄Dp : ˆ̄Dp + τK2 (1 : D̄p)

2 + τK3 1 : D̄p d̄ + τK4 d̄2 + τK5 d̄ · d̄. (107)

with

τK1 = 2μ1 + 1

2
ck(ξ)(3μ1 + λ1 + 2t0

)
, τK2 = μ1 + λ1 + 1

2
ck(ξ)(2μ1 + λ1 + t0

)
,

τK3 = 2λ1 + 2νck(ξ)(2μ1 + λ1 + t0), (108)

τK4 =(1−c)(2μ1+λ1) + c(2μ2+λ2)+4νc(λ1 − λ2) + 2ν2c
(
k(ξ)(2μ1 + λ1 + t0) + 2(μ2+λ2−μ1−λ1)

)
,

(109)

τK5 = 4μ1 + ck(ξ)
(
5μ1 + λ1 + 4t0

)
. (110)

Wesee that smaller values of k(ξ)producebetter bounds.Good results are obtainedwith ξ = 2.5, k(ξ) = 2.468.
(If ξ > 2.5, then k(ξ) is only slightly decaying and reaches its minimum k(4.69) = 2.19, but large values of
ξ require very small volume fractions c.)

8.4 The dynamic approach

We remember the first two terms of (39):

� ≡ 2 L̄ : S∗ − S∗ : A∗−1 : S∗. (111)

We introduce the following solenoidal field:

S∗
1 = Z = const. , S∗

2 = Z + σe ⊗ e = const. (112)

and find

� = 2 L̄ : Z − Z : A∗−1 : Z + 2cσ d̄ − 2cσe ⊗ e : A∗−1
2 : Z − cσ 2e ⊗ e : A∗−1

2 : e ⊗ e. (113)

The maximum is achieved if we choose

σ = 1

N

(
d̄ − e ⊗ e : A∗−1

2 : Z
)

with N = e ⊗ e : A∗−1
2 : e ⊗ e. (114)

It becomes

� = 2 L̄ : Z − Z : A∗−1 : Z + c
1

N

(
d̄ − e ⊗ e : A∗−1

2 : Z
)2

. (115)

Now varying Z, the maximum of this expression is found if we have

L̄ − A∗−1 : Z − c
1

N

(
d̄ − e ⊗ e : A∗−1

2 : Z
)
e ⊗ e : A∗−1

2 = 0. (116)
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We perform a double contraction with Z and subtract the result from (115) to find a simpler form of the
maximum value:

� = L̄ : Z + c
1

N

(
d̄ − e ⊗ e : A∗−1

2 : Z
)
d̄.

(117)

The representation (65) implies

A∗−1 : e ⊗ e = β3 1p + β4 e ⊗ e, (118)

N = e ⊗ e : A∗−1 : e ⊗ e = β4, (119)

e ⊗ e : A∗−1 : Z = β3 1 : Zp + β4 e · Z · e, (120)

1p : A∗−1 : Z = 2 β2 1p : Z + 2 β̂3 e · Z · e. (121)

We write β j (1) or β j (2) in order to discern the β-values of the two components.
The double contraction of (116) with e ⊗ e yields

d̄ = β3(1)1 : Zp + β4(1)e · Z · e. (122)

Then (116) becomes

L̄ =
(
(1 − c)A∗−1

1 + cA∗−1
2

)
: Z + c

(β3(2)

β4(2)
1p + e ⊗ e

)((
β3(1) − β3(2)

)
1 : Zp + (

β4(1) − β4(2)
)
e · Z · e

)
.

(123)

Making use of (65) we can write

L̄ = β
†
1 Ẑp + (

β
†
2 1 : Zp + β

†
3 e · Z · e) 1p

+ (
β̂
†
3 1 : Zp + β

†
4 e · Z · e)e ⊗ e + β

†
5 p ⊗ e + β

†
6 e ⊗ p + β

†
7 ω e × 1 + β

†
8 q ⊗ e + β

†
9 e ⊗ q.

(124)

with

β
†
1 = β̄1 , β

†
2 = β̄2 + c

β3(2)

β4(2)

(
β3(1) − β3(2)

)
, β

†
3 = β̄3 + c

β3(2)

β4(2)

(
β4(1) − β4(2)

)
,

β̂
†
3 = ¯̂

β3 + c
(
β3(1) − β3(2)

) = β3(1), (125)

β
†
4 = β̄4 + c

(
β4(1) − β4(2)

) = β4(1) , β
†
5 = β̄5 , β

†
6 = β̄6 , β

†
7 = β̄7 , β

†
8 = β̄8 , β

†
9 = β̄9.

(126)

We also need

1

2
1 : D̄p = β

†
21 : Zp + β

†
3e · Z · e, (127)

and, together with (122), find

1 : Zp = �
†
1

(
− β

†
3 d̄ + 1

2
β
†
41 : D̄p

)
, (128)

e · Z · e = �
†
1

(
β
†
2 d̄ − 1

2
β̂
†
31 : D̄p

)
(129)
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with

�
†
1 = 1

β
†
2β

†
4 − β

†
3 β̂

†
3

. (130)

We introduce this into the second term of (117) and arrive at

� = L̄ : Z + c

2
�

†
1

(
β̂
†
3 − β3(2)

β4(2)
β
†
4

)
1 : D̄pd̄ + c

(
1

β4(2)
+ �

†
1

(β3(2)

β4(2)
β
†
3 − β

†
2

))
d̄2. (131)

The first term is that of the Reuss bound with S∗ ≡ Z, cf. (42), (43). The values β̄ have only to be replaced by
β†. We define

ζ † = 1

4

(
�

†
1β4

† − 2t0 − 2y0
)
, (132)

η† = −1

2
�

†
1(β

†
3 + β̂

†
3 ) − 2y0 − y̌ + c

2
�

†
1

(
β̂
†
3 − β3(2)

β4(2)
β
†
4

)
, (133)

θ† = �
†
1β

†
2 − t0 − ¯̌t + c

(
1

β4(2)
+ �

†
1

(β3(2)

β4(2)
β
†
3 − β

†
2

))
, (134)

and arrive at the lower bound

D̄ : C̃ : D̄ ≥ τD1
ˆ̄Dp : ˆ̄Dp + τD2 (1 : D̄p)

2 + τD3 1 : D̄p d̄ + τD4 d̄2 + τD5 d̄ · d̄ (135)

with

τD1 = ε , τD2 = ζ † , τD3 = η† , τD4 = θ† , τD5 = φ − χ2

4ψ
. (136)

9 Examples

We construct upper and lower bounds for several values of stiffness and stress. The coefficients τ1 to τ5 are
not appropriate for a comparison of the bounds. We make use of the proper numbers, derived from τ2, τ3, and
τ4, instead, and define

�̃1= 1

2

(
τ2+τ4+

√
(τ2−τ4)2+τ 23

)
, �̃2 = 1

2

(
τ2 + τ4 −

√
(τ2 − τ4)2 + τ 23

)
, �̃3 = τ1 , �̃4 = τ5.

(137)

These coefficients depend on the volume fraction c of the reinforcement. They are better understood if we
refer them to the values at c = 0:

� j (c) = �̃ j (c)

|�̃ j (0)| j = 1 . . . 4. (138)

The first two coefficients describe the behaviour under combinations of the stretchings 1 : D̄p 1p and d̄ = e·D̄·e
and the last two the behaviour under the shearings ˆ̄Dp and d̄ ⊗ e + e ⊗ d̄, respectively.
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9.1 Uniaxial stress

We choose

20μ1 = 10λ1 = λ2 = 2μ2. (139)

So the stiffness of the reinforcement is ten times the stiffness of the matrix and Poisson’s ratio of the two
components—cf. (93)—is the same,

ν1 = ν2 = 1

3
(140)

We assume the existence of a normal stress in the direction of e, proportional to the local stiffness:

t0 = 0 , ť1 = εμ1 , ť2 = εμ2 �⇒ T̄ = εμ̄e ⊗ e. (141)

We infer from (72)

μ2
(
1 − √

1 + ε
)

< y0 + y̌/2 < μ1
(
1 + √

1 + ε
)
. (142)

This implies

√
1 + ε >

μ2 − μ1

μ2 + μ1
�⇒ ε > − 4μ2/μ1

(1 + μ2/μ1)2
= −0.3305. (143)

If the uniaxial stress ť is compressive, then a tensor Y can only exist if ε is not smaller than this critical value.
Otherwise internal buckling cannot be excluded as we have seen in Sect. 6 and the construction of our bounds
is not applicable.
We consider the critical case and infer from (71)

y0 + y̌/2 = μ1
(
1 + √

1 + ε
) = 1.818μ1

< −λ1 + √
(μ1(1 + ε/2) + λ1/2)(2μ1 + 2λ1 + y0) =

(
− 2 + √

1.8348(6 + y0/μ1)
)
μ1 (144)

which, together with the condition α1 = 2μ1 − y0 > 0 according to (70) and (61), limits y0 to the narrow
range

1.945 < y0/μ1 < 2.0. (145)

We choose a fixed Y that satisfies (144) and (145), namely

y0/μ1 = 1.99 , y̌/μ1 = −0.345, (146)

and want to investigate the influence of the stress level ε on the bounds. So we compare � j of ε = − 0.33 and
ε = + 0.33. The data of Table 1 are based on a volume fraction c = 0.1 of the reinforcement. The labels V, K,
D, R refer to the bounds of Voigt, of the kinematic and the dynamic approach, and of Reuss.

We see that only the first two Reuss bounds depend on the stress ť .
Next we want to study the influence of variousY on the bounds. Therefore we consider a tensile stress, namely
ε = + 0.33. If we had t0 > 0, then the stiffness A would be positive-definite and Y = 0 a possible choice.

Table 1 Bounds in case of uniaxial stress with a fixed Y

ε �1 �2 �3 �4

V 1.9 1.9 1.9 1.9
K 1.414 1.565 1.308 1.432
D 1.391 1.539 1.0 1.099
R −0.33 1.160 1.089 1.0 1.099

+0.33 1.103 0.946 1.0 1.099
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Table 2 Bounds in case of uniaxial tension, influence of the choice of Y

y0/μ1 y̌/μ1 �1 �2 �3 �4

V 1.9 1.9 1.9 1.9
K 1.414 1.565 1.308 1.432
D 0.01 1.374 1.519 1.098 1.099

1.99 1.391 1.539 1.0 1.099
R 0.01 −0.31 1.068 1.036 1.098 1.099

0.01 0.0 1.070 1.026 1.098 1.099
0.01 3.18 1.094 0.919 1.098 1.099
1.99 −4.27 1.074 1.069 1.0 1.099
1.99 −0.345 1.103 0.946 1.0 1.099
1.99 0.32 1.107 0.921 1.0 1.099

Table 3 Prestress, influence of the choice of Y on two Reuss bounds

y0/μ1 y̌/μ1 �1 �2

R 0.01 0.46 1.056 0.963
0.01 2.56 1.072 0.888
0.23 0. 1.057 0.968
1.72 0. 1.083 0.892
1.99 −3.5 1.062 0.998
1.99 −0.46 1.084 0.895

Since we have t0 = 0 we must allow an arbitrarily small y0 > 0. The conditions α1 > 0 and α7 > 0 according
to (70), (61), and (63) give

0 < y0/μ1 < 2.0. (147)

Conditions (71) and (72) yield

−0.153μ1 = μ1
(
1 − √

1 + ε
)

< y0 + y̌/2

< −λ1 + √
(μ1(1 + ε/2) + λ1/2)(2μ1 + 2λ1 + y0) =

(
− 2 + √

2.165(6 + y0/μ1)
)
μ1. (148)

This implies

y0/μ1 = 0.01 �⇒ −0.326 < y̌/μ1 < 3.194,

y0/μ1 = 1.99 �⇒ −4.286 < y̌/μ1 < 0.338. (149)

The results can be found in Table 2, which again uses c = 0.1.
We arrive at the conclusion: If the stresses are positive, then the lower bounds can be computed withY ≈ 0.

We see, however, that the first two lower bounds become better when computed with y0/μ1 ≈ 2, whereas the
third one is worse. In addition, the first Reuss bound increases if y̌ increases, while the second Reuss bound
increases if y̌ decreases.

9.2 Prestress

We choose the stiffness coefficients of (139), a volume fraction c = 0.1, and the following stresses:

t0 = 0 , ť1 = −0.4μ1 , ť2 = 0.36μ2 �⇒ T̄ = 0. (150)

Now Y ≈ 0 is not allowed because of the compressive stress in the matrix. The overall stress of the
composite is zero, while there was an overall tension in the foregoing example. Nevertheless, most of the
results are identical. The only deviations occur with the first two Reuss bounds and can be found in Table 3.
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Fig. 1 Negative modulus of compression. Allowable range of Y (μ1 = 1) A: α7 = 0, B: α1 = 0, C: �1 = 0, D:
�2 = 0

9.3 Matrix with negative modulus of compression

We introduce the deviator D̂ of D and the modulus of compression κ . Then the isotropic material behaviour
can be characterized by

C : D = 2μD + λ1 : D 1 = 2μD̂ + κ1 : D 1 (151)

with

κ = 1

3
(2μ + 3λ). (152)

We assume a stress-free state so that S-E conditions (75) reduce to

μ > 0 , 2μ + λ > 0 �⇒ κ > −4

3
μ. (153)

We are interested in the range 0 > κ > − 4
3μ where the S-E conditions are satisfied, but C is indefinite. The

classical approach is not applicable since it is based on the assumption of a positive-definiteC. So we construct
bounds with the help of suitable values of Y.

We choose

λ2 = 2μ2 = 20μ1 , λ1 = −3

4
μ1 �⇒ κ2 = 8

3
μ2 > 0 , κ1 = − 1

12
μ1 < 0 , ν2 = 1

3
, ν1 = −3

2
,

(154)

and t0 = 0, ť j = μ j/1000 and c = 0.1. The region of allowable values in the y0, y̌ plane can be seen in Fig. 1.
It is limited by conditions (70) of the matrix material. The results are given in Table 4.

The Voigt bounds and the first two Reuss bounds are not useful. The largest values of the first two bounds
of the dynamic approach are obtained with y0 ≈ 2. If , in contrast, y0 ≈ 0 is chosen, then the second one is
useless.

Next we are interested in the dependence of the overall stiffness C̃ on the volume fraction c. The negative
value of κ causes �2 to be negative if c is small, while the other three coefficients are positive with any c.
Figure 2 gives the dependence of �2 on c with y0 = 1.99. We see that positive-definiteness of the overall
stiffness C̃ is guaranteed if c > 0.026. The matrix alone is not stable under free boundary conditions, but this
is repaired by a rather small reinforcement.



A. Krawietz

Table 4 Negative modulus of compression

y0/μ1 y̌/μ1 �1 �2 �3 �4

V 3.515 16.81 1.9 1.9
K 2.343 1.872 1.139 1.262
D 0.01 0.38 2.326 0.848 1.098 1.099

0.01 2.6 2.326 0.848 1.098 1.099
0.126 0.0 2.327 0.90 1.093 1.099
1.99 −4. 2.341 1.704 1.0 1.099
1.99 0. 2.341 1.704 1.0 1.099

R 0.01 0.38 1.090 −0.988 1.098 1.099
0.01 2.6 1.038 −0.356 1.098 1.099
0.126 0.0 1.094 −1.0 1.093 1.099
1.99 −4. 1.109 −0.579 1.0 1.099
1.99 0. 1.016 0.567 1.0 1.099

Fig. 2 Negative modulus of compression. Dependence of �2 on c K: Kinematic approach, D: Dynamic approach

9.4 Soft inclusions

We choose

2μ1 = λ1 = 10λ2 = 20μ2. (155)

So the stiffness of the matrix is ten times the stiffness of the component #2 and Poisson’s ratio of the two
components is the same. The behaviour of the component #2 is now not that of a reinforcement but resembles
more that of cavities. The composite shall be free of stress everywhere. Nevertheless we choose t0 = 0 and
ť j = μ j/1000 to avoid the problem described after Eq. (89). We omit the kinematic approach. (Our velocity
field (94) is inappropriate here.) The results in Table 5 are again based on c = 0.1.

The choice Y ≈ 0 yields acceptable results. If we choose y0/μ1 ≈ 2, then the third bound is no longer
useful, while the first two bounds become better: the bounds of the dynamic approach and the first Reuss bound
with any value of y̌, the second Reuss bound, however, only if y̌ is as small as possible, i.e. y̌/μ1 ≈ −4.
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Table 5 Soft inclusions

y0/μ1 y̌/μ1 �1 �2 �3 �4

V 0.91 0.91 0.91 0.91
D 0.01 0.658 0.728 0.525 0.526

1.99 0.693 0.766 0.104 0.526
R 0.01 0.0 0.527 0.525 0.525 0.526

0.01 2.9 0.570 0.105 0.525 0.526
1.99 −3.99 0.537 0.594 0.104 0.526
1.99 0.0 0.584 0.108 0.104 0.526

Table 6 Different Poisson’s ratio

y0/μ y̌/μ �1 �2 �3 �4

V 0.795 0.997 1.0 1.0
D 0.01 0.615 0.992 1.0 1.0

1.99 0.646 0.993 1.0 1.0
R 0.01 0.0 0.602 0.992 1.0 1.0

0.01 2.9 0.437 0.983 1.0 1.0
1.99 −3.99 0.615 0.992 1.0 1.0
1.99 0.0 0.646 0.993 1.0 1.0

9.5 Different Poisson’s ratio

We choose

μ1 = μ2 = μ , λ1 = 8μ , λ2 = 2μ (156)

and find

ν1 = 4

9
, ν2 = 1

3
. (157)

The composite shall be free of stress everywhere. Nevertheless we choose t0 = 0 and ť1 = μ/500 and
ť2 = μ/1000 to avoid the problem described after Eq. (89). We omit the kinematic approach again. Table 6 is
based on the volume fraction c = 0.3.

The choice Y ≈ 0 yields reasonable results. But if we choose y0/μ ≈ 2, then the first two bounds become
better. Since we consider a stress-free state and C is positive-definite, the bounds that correspond to the choice
Y ≈ 0 could also be obtained with the classical results according to (4) without recourse to A or A∗. However,
if we introduce a suitable Y, then the Reuss bounds are even better than the bounds of the more sophisticated
dynamic approach based on Y ≈ 0.

10 Conclusions

We succeeded in constructing upper and lower bounds to the incremental stiffness of a hyperelastic composite
even in cases where a simple extension of the classical approach is not applicable. This is especially the
case if the material is under essential compression stresses or if the modulus of compression is not positive
somewhere. The remedy is to find some tensor Y that makes a pseudo-stiffness positive-definite. Then it is
not only possible to construct the bounds, but we also can be sure that the overall stiffness satisfies the S-E
conditions and that internal buckling of the composite is not possible. The existence of a Y does only depend
on the material properties of the body, while phenomena like internal buckling are surely influenced by the
geometry of the composite. In general, the tensor Y will not be uniquely determined and a suitable choice can
improve the bounds as our examples demonstrate.

The concept of a pseudo-stiffness, based on the availability of some tensor Y, allows new insight into the
behaviour of composites. This is obvious with the examples of Sect. 9. The application of the method to very
complex composites, however, although possible in principle, may be limited due to practical difficulties.



A. Krawietz

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit
line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Basic facts of elastic simple bodies

Notation: A dot denotes a contraction, and a double dot generates a ⊗ b : c ⊗ d = a · c b · d. The transpose
of a tensor Z is written ZT , its deviator Ẑ and its symmetric part sym[Z]. 1 and I are the identical mappings
on the set of vectors and of symmetric second-order tensors, respectively.

The following results may, e.g., be found in [6]. Let F be the local transplacement from the reference
placement to the actual one. Its time rate is connected with the spatial velocity gradient v ⊗ ∇ according to

Ḟ · F−1 = v ⊗ ∇ ≡ L = D + W. (158)

Here D and W denote the symmetric and skew part of the velocity gradient, i.e. the stretching and spin,
respectively. Green’s strain tensor and its time rate are

E = 1

2
(FT · F − 1) , Ė = 1

2
FT · (L + LT ) · F = FT · D · F. (159)

The connections between the first Piola-Kirchhoff stress tensor (nominal stress tensor) T1, the second Piola-
Kirchhoff stress tensor T2 and the Cauchy stress tensor T are

T2 = F−1 · T1 = det F F−1 · T · F−T . (160)

Their time rates are connected by

Ṫ1 = det F
(
Ṫ + T 1 : L − T · LT ) · F−T = F · Ṫ2 + Ḟ · T2. (161)

A hyperelastic material possesses a strain energy function w per unit mass so that

T2 = �0
∂w

∂E
(E) , Ṫ2 = �0

∂2w

∂E2 (E) : Ė. (162)

If the reference placement and the actual placement coincide, then the time rate of nominal stress referred to
the actual placement is

S ≡ Ṫ1(F = 1) = Ṫ2(F = 1) + L · T2(F = 1) = �
∂2w

∂E2 (E = 0) : D + L · T ≡ C : D + L · T ≡ A : L.

(163)

We denote by �0 and � the mass densities in the two placements. The fourth-order tensor C is seen to be a
symmetric mapping of the set of symmetric second-order tensors into itself and so has at most 21 independent
coefficients.

If we consider a quasistatic process from a state of equilibrium, then the field equations

T · ∇ = 0 , S · ∇ = 0 (164)

must be satisfied and also jump conditions must hold at surfaces where T and S are not continuous:

[T] · n = 0 , [S] · n = 0. (165)

If these conditions are satisfied, then the fields T and S shall be called solenoidal.
We usually only refer to the field equations and do not write down the jump conditions explicitly.

http://creativecommons.org/licenses/by/4.0/
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B Mean values

Let S ∈ S and u ∈ U (cf. Sect. 2). Then the following mean values can be derived.

S · (∇ ⊗ u) ≡ 1

V

∫
S · (∇ ⊗ u) dV = 1

V

∫
S · n ⊗ u dA − 1

V

∫
(S · ∇) ⊗ u dV = 0. (166)

The field S is solenoidal and u = 0 on the boundary in case of a problem of type 1, while u and S are periodic
in case of a problem of type 2 and the normal vector n has opposite orientation on corresponding boundary
points.

The trace gives

S : u ⊗ ∇ = 0. (167)

The special case S ≡ 1 yields

∇ ⊗ u = 1

V

∫
n ⊗ u dA = 0. (168)

Another special case is

S = ∇ ⊗ u − ∇ · u 1 �⇒ S · ∇ = 0 �⇒ (∇ ⊗ u)2 − ∇ · u (∇ ⊗ u) = 0. (169)

Let

L = L̄ + u ⊗ ∇ u ∈ U , T = TT ∈ S . (170)

Then the following identities are valid.

L · T = (L̄ + u ⊗ ∇) · T = L̄ · T̄ + T · (∇ ⊗ u)
T

︸ ︷︷ ︸, (171)

T : LT · L = T : (L̄ + u ⊗ ∇)T · (L̄ + u ⊗ ∇) = T̄ : L̄T · L̄ + 2 (T · ∇ ⊗ u)︸ ︷︷ ︸ : L̄T + T : (∇ ⊗ u) · (u ⊗ ∇),

(172)

L2 − 1 : L L = (L̄ + u ⊗ ∇)2 − 1 : (L̄ + u ⊗ ∇) (L̄ + u ⊗ ∇)

= L̄
2 − 1 : L̄ L̄ + (u ⊗ ∇)︸ ︷︷ ︸ ·(L̄ − 1 : L̄ 1) + L̄ · (

(u ⊗ ∇)︸ ︷︷ ︸−1 : (u ⊗ ∇)︸ ︷︷ ︸ 1
) + (u ⊗ ∇)2 − ∇ · u (u ⊗ ∇)︸ ︷︷ ︸ .

(173)

All the underbraced terms vanish.

C Integration

We need the following integrals in Sect. 8.3:
∫ 2π

φ=0
er ⊗ er dφ =

∫ 2π

φ=0
eφ ⊗ eφ dφ = π1p, (174)

∫ 2π

φ=0
er ⊗ er ⊗ er ⊗ er dφ =

∫ 2π

φ=0
eφ ⊗ eφ ⊗ eφ ⊗ eφ dφ = π

4

(
1p ⊗ 1p + 2 Ip

)
, (175)

∫ 2π

φ=0
er ⊗ er ⊗ eφ ⊗ eφ dφ =

∫ 2π

φ=0
eφ ⊗ eφ ⊗ er ⊗ er dφ = π

4

(
3 1p ⊗ 1p − 2 Ip

)
. (176)
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Here Ip and 1p denote the restrictions of I and 1 to the plane normal to e.
We also provide some integrals based on the function f defined in (96):

∫ ξ R

r=R

(
f ′(r) + f (r)

r

)
r dr = −R2 ,

∫ ξ R

r=R

(
f ′(r) f (r)

r

)
r dr = − R2

2
, (177)

∫ ξ R

r=R

((
f ′(r)

)2 +
( f (r)

r

)2)
r dr = (

k(ξ) − 1
)
R2 with k(ξ) ≡ 4ξ4 ln ξ − 3ξ4 + 4ξ2 − 1

3(ξ − 1)4
. (178)

First, we compute mean values, based on u⊗∇ according to (95), in the transition zone. The area of that zone
is At = π(ξ2 − 1)R2:

1

At

∫
At

u ⊗ ∇ dA = 1

At

∫ ξ R

r=R

∫ 2π

φ=0
u ⊗ ∇ dφ r dr

= 1

π(ξ2 − 1)R2 K ·
(∫ ξ R

r=R
f ′(r) r dr

∫ 2π

φ=0
er ⊗ er dφ +

∫ ξ R

r=R
f (r) dr

∫ 2π

φ=0
eφ ⊗ eφ dφ

)

= − 1

ξ2 − 1
K, (179)

1

At

∫
At

u ⊗ ∇ : u ⊗ ∇ dA = KT · K : 1

At

∫
At

(
f ′er ⊗ er + f

r
eφ ⊗ eφ

)2
dA

= 1

π(ξ2 − 1)R2 K
T · K :

( ∫ ξ R

r=R
f ′(r)2 r dr

∫ 2π

φ=0
er ⊗ er dφ +

∫ ξ R

r=R

f (r)2

r
dr

∫ 2π

φ=0
eφ ⊗ eφ dφ

)

= k(ξ) − 1

ξ2 − 1
K : K, (180)

1

At

∫
At

u ⊗ ∇ : ∇ ⊗ u dA

= K : 1

At

∫
At

((
f ′er ⊗ er + f

r
eφ ⊗ eφ

)
⊗

(
f ′er ⊗ er + f

r
eφ ⊗ eφ

))[1432]
dA : K

= 1

ξ2 − 1
K :

(
k(ξ)

2
Ip +

(k(ξ)

4
− 1

)
1p ⊗ 1p

)[1432]
: K

= 1

ξ2 − 1

(
k(ξ)

4

(
K : K + KT : K + (1p : K)2

)
− KT : K

)
, (181)

1

At

∫
At

sym [u ⊗ ∇] : sym [u ⊗ ∇] dA

= 1

ξ2 − 1

(
− sym [K] : sym [K] + k(ξ)

8

(
5K : K + KT : K + (1p : K)2

))
, (182)

1

At

∫
At

(
1 : sym [u ⊗ ∇]

)2
dA

= K : 1

At

∫
At

((
f ′er ⊗ er + f

r
eφ ⊗ eφ

)
⊗

(
f ′er ⊗ er + f

r
eφ ⊗ eφ

))
dA : K
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= 1

ξ2 − 1
K :

(
k(ξ)

2
Ip +

(k(ξ)

4
− 1

)
1p ⊗ 1p

)
: K

= 1

ξ2 − 1

(
k(ξ)

2
sym [K] : sym [K] +

(k(ξ)

4
− 1

)(
1p : K

)2)
. (183)

Finally, the corresponding mean values of the wire zone with area Aw = πR2 are

1

Aw

∫
Aw

u ⊗ ∇ dA = K, (184)

1

Aw

∫
Aw

u ⊗ ∇ : u ⊗ ∇ dA = K : K, (185)

1

Aw

∫
Aw

sym [u ⊗ ∇] : sym [u ⊗ ∇] dA = sym [K] : sym [K], (186)

1

Aw

∫
Aw

(
1 : sym [u ⊗ ∇]

)2
dA =

(
1p : K

)2
. (187)

All these mean values are independent of the radius R.
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