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Assumption of incompressibility:

0 = v · ∇ = 1 : v ⊗∇ = 1 : sym[v ⊗∇]

Simple material (First-gradient material)

Power per unit volume:

π = T : sym[v ⊗∇]

Incompressible fluid ( π is dissipated):

T = TD(sym[v ⊗∇]) +TR

TR = −p1

The pressure p is a scalar reaction field

Linear isotropic behaviour (Newton, Navier-Stokes):

TD(sym[v ⊗∇]) = 2η sym[v ⊗∇]

Important observation of St-Vénant (1869):

The description of complicated flows may need the inclusion of higher

velocity gradients

This implies that the material behaviour contains a characteristic length



Second-gradient fluid:

π = T : v ⊗∇ + T : ·v ⊗∇⊗∇

Incompressibility additionally implies:

0 = ∇(v · ∇) = 1 : v ⊗∇⊗∇

=⇒ 0 = (q·∇)(v·∇) = 1⊗q : ·v⊗∇⊗∇ = sym[23][1⊗q] : ·v⊗∇⊗∇

Constitutive equations:

T = TD(v ⊗∇,v ⊗∇⊗∇) +TR

T = TD(v ⊗∇,v ⊗∇⊗∇) + TR

=⇒ TR = −p1 , TR = sym[23][1⊗ q]

Four scalar reaction fields: p,q



A trivial example: Flow down an inclined plane

Linear isotropic case

Simple fluid:

The scalar reaction field p is unique

Second-gradient fluid:

The scalar reaction field p + 2q · ∇ is unique

The vector field q is almost arbitrary. If q is chosen then p is known

The stress fields T and T are not unique

So the situation is unsatisfactory



Remedy: Recourse to the weakly compressible fluid

Split of the first velocity gradient into a deviatoric and a spherical part

v ⊗∇ = (v ⊗∇)∗ +
1

3
(v · ∇) 1 with (v ⊗∇)∗ : 1 = 0

Equation of continuity

ϱ• ≡ ∂ϱ

∂t
+ v · (∇ϱ) = −ϱ (v · ∇) =⇒ v · ∇ = −ϱ•

ϱ

∇(v · ∇) = − 1

ϱ
(∇ϱ)• − 1

ϱ
(∇⊗ v)∗ · ∇ϱ +

4ϱ•

3ϱ2
∇ϱ



Viscous stresses

Representation theorems of the general hemitropic constitutive laws

Tv = sym[α1 (v · ∇)1 + α2 v ⊗∇+α8 ϵ : v ⊗∇⊗∇]

Tv = sym[23]
[
α3 1⊗∇(v · ∇) +

α4

2
(∇(v · ∇)⊗ 1 + 1⊗∆v) + α5∆v ⊗ 1

+α6 v ⊗∇⊗∇ + α7∇⊗ v ⊗∇+α9 ϵ · sym[v ⊗∇]
]

We disregard the underlined coupling terms and obtain isotropic behaviour

Tv = α2 sym[(v ⊗∇)∗]−
(
α1 +

α2

3

) ϱ•
ϱ
1

Tv = sym[23]
[α4

2
1⊗ (v ⊗∇)∗ · ∇ + α5 (v ⊗∇)∗ · ∇ ⊗ 1

+α6 (v ⊗∇)∗ ⊗∇ + α7 (∇⊗ v)∗ ⊗∇

+
(
α3 +

α4

6
+

α7

3
+

α6

3

)
1⊗

(
− 1

ϱ
(∇ϱ)• − 1

ϱ
(∇⊗ v)∗ · ∇ϱ +

4ϱ•

3ϱ2
∇ϱ

)

+
(α4

2
+

α5

3

)(
− 1

ϱ
(∇ϱ)• − 1

ϱ
(∇⊗ v)∗ · ∇ϱ +

4ϱ•

3ϱ2
∇ϱ

)
⊗ 1

]

A material that is completely characterized by these viscous constitutive

laws would have a strange behaviour: Given a constant state of stress, it

could change its volume without limit



Elastic stresses

Therefore we assume, that a deviation of the mass density ϱ from some

value ϱ0 is accompanied by a storage of elastic energy

w = w(ϱ, |∇ϱ|) , w• =
∂w

∂ϱ
ϱ• +

∂w

∂|∇ϱ|
|∇ϱ|•

with

ϱ• = −ϱ1 : v ⊗∇

|∇ϱ|• = − |∇ϱ|
(
1 + e⊗ e

)
: v ⊗∇− ϱ e · ∇(v · ∇) , e ≡ ∇ϱ

|∇ϱ|
The power of the elastic stresses per unit volume is then

πe = Te : v ⊗∇ + Te : ·v ⊗∇⊗∇ = ϱw•

We infer

Te = −∂w

∂ϱ
ϱ2 1− ∂w

∂|∇ϱ|
ϱ |∇ϱ|

(
1 + e⊗ e

)

Te = − ∂w

∂|∇ϱ|
ϱ2 sym[23][1⊗ e]

Let |ϱ − ϱ0| and |∇ϱ| be small, so that the following quadratic form is

appropriate

w =
K

2ϱ30

(
(ϱ− ϱ0)

2 + L2 |∇ϱ|2
)

K: modulus of compressibility, L: characteristic elastic length

The stresses become linear in ϱ − ϱ0 and |∇ϱ| if the underlined higher

order term is disregarded and ϱ is approximated by ϱ0

Te = −K

ϱ0
(ϱ− ϱ0)1

Te = −KL2

ϱ0
sym[23][1⊗∇ϱ]



Total stresses

We choose a parallel connection of the elastic and viscous stresses in the

sense of Kelvin-Voigt

T = Tv +Te , T = Tv + Te

Moreover, we define the scalar field

u ≡ K

ϱ0
(ϱ− ϱ0)

and the two retardation times corresponding to the second and third order

constitutive equation

t2 ≡
α1

K
, t3 ≡

α3

KL2

The denominators ϱ in the viscous stresses are replaced by ϱ0. So we arrive

at

T = α2 sym
[
(v ⊗∇)∗

]
−

(( α2

3K
+ t2

)
u• + u

)
1

T = sym[23]

[
α4

2
1⊗ (v ⊗∇)∗ · ∇+ α5 (v ⊗∇)∗ · ∇ ⊗ 1+ α6 (v ⊗∇)∗ ⊗∇+ α7 (∇⊗ v)∗ ⊗∇

+1⊗ L2
((

t3 +
1

KL2

(α4

6
+

α7

3
+

α6

3

))(
− (∇u)• − (∇⊗ v)∗ · ∇u+

4

3K
u•∇u

)
−∇u

)

+
1

K

(α4

2
+

α5

3

)(
− (∇u)• − (∇⊗ v)∗ · ∇u+

4

3K
u•∇u

)
⊗ 1

]



Limiting process to the incompressible fluid

There will hardly be any real material that is totally incompressible. How-

ever, the modulus of compressibility K may be very high so that only

small changes of mass density will occur.

We let K tend towards infinity. The stresses and hence the values of u can

only remain finite if K → ∞ implies ϱ → ϱ0. We obtain

T = sym[α2 (v ⊗∇)]− p1

T = sym[23]
[α4

2
1⊗∆v + α5∆v ⊗ 1 + α6 v ⊗∇⊗∇

+α7∇⊗ v ⊗∇ + 1⊗ 2q
]

with

p = t2 u
• + u

2q = −L2
(
t3

(
(∇u)• + (∇⊗ v) · ∇u

)
+∇u

)

Now, the fields p and q do not represent four unknown scalar functions

but are derived from only one scalar function u. This makes it possible

to obtain information on the internal stresses, the surface tension and the

forces acting on fixed boundaries that is not available with the classical

approach.



Result if L is one third of the fluid thickness

Note:We study strictly isochoric motions. No viscoelastic volume change

is allowed. Nevertheless, the limit from the weakly compressible case allows

the reduction to one function u. Its contribution to the stresses makes

use of three viscoelastic constants L, t2, t3 which describe the behaviour

under volumetric changes, although these changes were eliminated by our

limiting process.
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